Bioavailability of Total Petroleum Hydrocarbons

  • Saranya Kuppusamy
  • Naga Raju Maddela
  • Mallavarapu Megharaj
  • Kadiyala Venkateswarlu


There is a fundamental need to understand and possibly quantify the bioavailable fraction of total petroleum hydrocarbons (TPHs) present in the environment. Bioavailability can be defined as the amount of a pollutant that can be readily taken up by microorganisms for biodegradation. The bioavailability of TPHs governs the rate of biodegradation or bioremediation. There are several constraints including low aqueous solubility, sorption, and micropore exclusion that limit the bioavailability of TPHs to microorganisms. Surfactants enhance TPHs bioavailability and thereby increase the rate of biodegradation. To quantify the bioavailable fractions, many techniques have been employed ranging from solvent-based extractions to the use of biota. Chemical techniques used to determine TPHs bioavailability include mild organic solvent extraction, supercritical fluid extraction with pure CO2, persulfate oxidation, cyclodextrin extraction, solid-phase extraction using Tenax, and surfactant extraction. The biological assays developed for assessing the bioavailability of TPHs in the environment include the respirometry, bioluminescence assay, quantitation of mRNA, earthworm toxicity test, human dermal uptake test, animal oral uptake test, microtox toxicity test, springtail toxicity test, Ames assay, seed germination/root elongation test, algal growth inhibition test, and Daphnia immobilization test.


Bioavailability of TPHs Bioavailability assessments Chemical and biological assays PAHs Surfactants 


  1. Adedigba BM, Semple KT (2015) Bioavailability of persistent organic pollutants in soils: concept, analytical tools, and application in the risk assessment. Comp Anal Chem 67:493–512CrossRefGoogle Scholar
  2. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265CrossRefGoogle Scholar
  3. Banks MK, Schultz KE (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 167:211–219CrossRefGoogle Scholar
  4. Bori J, Vallès B, Ortega L, Riva MC (2016) Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation. Environ Sci Pollut Res 23:18694–18703CrossRefGoogle Scholar
  5. Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J, Pollard SJ (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37:199–232CrossRefGoogle Scholar
  6. Cachada A, Pereira R, da Silva EF, Duarte AC (2014) The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Sci Total Environ 472:463–480CrossRefGoogle Scholar
  7. Chaineau CH, Yepremian C, Vidalie JF, Ducreux J, Ballerini D (2003) Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water Air Soil Pollut 144:419–440CrossRefGoogle Scholar
  8. Charrasse B, Hennebert P, Doumenq P (2018) Mobility of PAHs, PCBs and TPHs from fresh and aged dredged sediments. Waste Biomass Valoriz 9:1231–1241CrossRefGoogle Scholar
  9. Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y (2018) Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 38:17–30CrossRefGoogle Scholar
  10. Cho YM, Ghosh U, Kennedy AJ, Grossman A, Ray G, Tomaszewski JE, Smithenry DW, Bridges TS, Luthy RG (2009) Field application of activated carbon amendment for in situ stabilisation of polychlorinated biphenyls in marine sediment. Environ Sci Technol 43:3815–3823CrossRefGoogle Scholar
  11. Cornelissen G, Rigterink H, Ferdinandy MM, van Noort PC (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32:966–970CrossRefGoogle Scholar
  12. Cui X, Mayer P, Gan J (2013) Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations. Environ Pollut 172:223–234CrossRefGoogle Scholar
  13. Cuypers C, Clemens R, Grotenhuis T, Rulkens W (2001) Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments. Soil Sediment Contam 10:459–482CrossRefGoogle Scholar
  14. Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46:1235–1245CrossRefGoogle Scholar
  15. Dawson JJ, Maciel H, Paton GI, Semple KT (2004) Analysis of organic pollutants in environmental samples. In: Keith AS, Malcolm SC (eds) Soil and environmental analysis, 3rd edn. Marcel Dekker Inc, New York, p 455Google Scholar
  16. Dean JR, Cresswell SL (2002) Extraction techniques for solid samples. Comp Anal Chem 37:559–586CrossRefGoogle Scholar
  17. Dorn PB, Vipond TE, Salanitro JP, Wisniewski HL (1998) Assessment of the acute toxicity of crude oils in soils using earthworms, Microtox®, and plants. Chemosphere 37:845–860CrossRefGoogle Scholar
  18. Duan L, Naidu R, Thavamani P, Meaklim J, Megharaj M (2015) Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environ Sci Pollut Res 22:8927–8941CrossRefGoogle Scholar
  19. Ehlers LJ, Luthy RG (2003) Peer reviewed: contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302ACrossRefGoogle Scholar
  20. Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele JP (1999) Ecotoxicological assessment of soils of former manufactured gas plant sites: bioremediation potential and pollutant mobility. Environ Sci Technol 33:4379–4384CrossRefGoogle Scholar
  21. Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428CrossRefGoogle Scholar
  22. Hartnik T, Jensen J, Hermens JL (2008) Nonexhaustive β-cyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environ Sci Technol 42:8419–8425CrossRefGoogle Scholar
  23. Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998CrossRefGoogle Scholar
  24. Herrchen M (1997) Bioavailability as a key property in terrestrial ecotoxicity assessment and evaluation. He Frauenhofer-Institute for Environmental Chemistry and Ecotoxicology, SchmallenbergGoogle Scholar
  25. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552CrossRefGoogle Scholar
  26. Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Tang H (2017) A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere 184:384–392CrossRefGoogle Scholar
  27. Juhasz AL, Waller N, Stewart R (2005) Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays. Biorem J 9:99–114CrossRefGoogle Scholar
  28. Kelsey JW, Kottler BD, Alexander M (1996) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31:214–217CrossRefGoogle Scholar
  29. Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil – a review. Chemosphere 212:755–767CrossRefGoogle Scholar
  30. Kuppusamy S, Venkateswarlu K, Megharaj M, Mayilswami S, Lee YB (2017) Risk-based remediation of polluted sites: a critical perspective. Chemosphere 186:607–615CrossRefGoogle Scholar
  31. Lal V, Peng C, Ng J (2015) A review of non-exhaustive chemical and bioavailability methods for the assessment of polycyclic aromatic hydrocarbons in soil. Environ Technol Innov 4:159–167CrossRefGoogle Scholar
  32. Liste HH, Alexander M (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46:1011–1017CrossRefGoogle Scholar
  33. Liu H, Wang H, Chen X, Liu N, Bao S (2014) Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater. Environ Monit Assess 186:4581–4589CrossRefGoogle Scholar
  34. Loehr RC, McMillen SJ, Webster MT (2001) Predictions of biotreatability and actual results: soils with petroleum hydrocarbons. Pract Period Hazard Toxic Radioact Waste Manage 5:78–87CrossRefGoogle Scholar
  35. Maier RM (2000) Bioavailability and its importance to bioremediation. In: Valdes JJ (ed) Bioremediation. Springer, Dordrecht, pp 59–78. Scholar
  36. Maletić S, Dalmacija B, Rončevic S (2013) Petroleum hydrocarbon biodegradability in soil–implications for bioremediation. In: Vladimir K, Anton K (eds) Hydrocarbon. IntechOpen, CroatiaGoogle Scholar
  37. Megharaj M, Naidu R (2008) Bioavailability and toxicity of contaminant mixtures to soil biota. Dev Soil Sci 32:233–243Google Scholar
  38. Megharaj M, Singleton I, McClure NC, Naidu R (2000) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38:439–445CrossRefGoogle Scholar
  39. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375CrossRefGoogle Scholar
  40. Naidu R, Semple KT, Megharaj M, Juhasz AL, Bolan NS, Gupta SK, Clothier BE, Schulin R (2008) Bioavailability: definition, assessment and implications for risk assessment. In: Hartemink AE, AB MB, Naidu R (eds) Chemical bioavailability in terrestrial environment, vol 32, 32nd edn. Elsevier, London, pp 39–51. (Developments in Soil Science)CrossRefGoogle Scholar
  41. Ortega-Calvo JJ, Ball WP, Schulin R, Semple KT, Wick LY (2007) Bioavailability of pollutants and soil remediation. J Environ Qual 36:383–1384CrossRefGoogle Scholar
  42. Plattenberg RH (2007) Environmental pollution: new research. Nova Publishers, New York, pp 235–245Google Scholar
  43. Płaza G, Nałęcz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296CrossRefGoogle Scholar
  44. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2015) Ecological implications of motor oil pollution: earthworm survival and soil health. Soil Biol Biochem 85:72–81CrossRefGoogle Scholar
  45. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2018) Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci Total Environ 636:968–974CrossRefGoogle Scholar
  46. Ramos EU, Meijer SN, Vaes WH, Verhaar HJ, Hermens JL (1998) Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ Sci Technol 32:3430–3435CrossRefGoogle Scholar
  47. Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179CrossRefGoogle Scholar
  48. Reinecke AJ, van Wyk M, Reinecke SA (2016) The influence of soil characteristics on the toxicity of oil refinery waste for the springtail Folsomia candida (Collembola). Bull Environ Contam Toxicol 96:804–809CrossRefGoogle Scholar
  49. Richardson SD, Lebron BL, Miller CT, Aitken MD (2010) Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. Environ Sci Technol 45:719–725CrossRefGoogle Scholar
  50. Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I (2014) Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. Environ Sci Pollut Res 21:9689–9708CrossRefGoogle Scholar
  51. Sabaté J, Viñas M, Solanas AM (2006) Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63:1648–1659CrossRefGoogle Scholar
  52. Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818CrossRefGoogle Scholar
  53. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231ACrossRefGoogle Scholar
  54. Simpson SL, Burston VL, Jolley DF, Chau K (2006) Application of surrogate methods for assessing the bioavailability of PAHs in sediments to a sediment ingesting bivalve. Chemosphere 65:2401–2410CrossRefGoogle Scholar
  55. Souza TS, Christofoletti CA, Fontanetti CS (2011) Chapter 10, Ecotoxicological assays applied in soils contaminated by petroleum hydrocarbons. In: Julia EV (ed) Ecotoxicology around the globe. Nova Science Publishers, New York, pp 247–261Google Scholar
  56. Spacie A, Hamelink JL (1995) Bioaccumulation. In: Gary MR (ed) Fundamentals of aquatic toxicology, effects, environmental fate and risk assessment, 2nd edn. TCRC Press, WashingtonGoogle Scholar
  57. Stokes JD, Paton GI, Semple KT (2005) Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manage 21:475–486CrossRefGoogle Scholar
  58. Stroo HF, Jensen R, Loehr RC, Nakles DV, Fairbrother A, Liban CB (2000) Environmentally acceptable endpoints for PAHs at a manufactured gas plant site. Environ Sci Technol 34:3831–3836CrossRefGoogle Scholar
  59. Szolar OH, Rost H, Hirmann D, Hasinger M, Braun R, Loibner AP (2004) Sequential supercritical fluid extraction (SSFE) for estimating the availability of high molecular weight polycyclic aromatic hydrocarbons in historically polluted soils. J Environ Qual 33:80–88CrossRefGoogle Scholar
  60. Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851CrossRefGoogle Scholar
  61. Tecon R, Beggah S, Czechowska K, Sentchilo V, Chronopoulou PM, McGenity TJ, van der Meer JR (2009) Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments. Environ Sci Technol 44:1049–1055CrossRefGoogle Scholar
  62. ten Hulscher TE, Postma J, den Besten PJ, Stroomberg GJ, Belfroid A, Wegener J, van Noort PC (2003) Tenax extraction mimics benthic and terrestrial bioavailability of organic compounds. Environ Toxicol Chem 22:2258–2265CrossRefGoogle Scholar
  63. Vales JJ (2000) Bioremediation. Kluwer Academic Publishers, Dordrecht, pp 59–78CrossRefGoogle Scholar
  64. Van Leeuwen CJ, Hermens JLM (1995) Ecotoxicological effects. In: Risk assessment of chemicals: an introduction. Springer, Dordrecht, pp 175–237CrossRefGoogle Scholar
  65. You J, Harwood AD, Li H, Lydy MJ (2011) Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction. J Environ Monit 13:792–800CrossRefGoogle Scholar
  66. Yu L, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Sci Total Environ 613:1140–1153CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Environmental StudiesAnna UniversityChennaiIndia
  2. 2.Facultad de Ciencias de la Salud y Departamento de investigaciónUniversidad Técnica de ManabíPortoviejoEcuador
  3. 3.Global Centre for Environmental RemediationThe University of NewcastleNewcastleAustralia
  4. 4.NelloreIndia

Personalised recommendations