Advertisement

Comparison of Four Different Fuller’s Earth Formulations in Skin Decontamination

Short Title: Fuller’s Earth Efficiency in Skin Decontamination
  • Annick Roul
  • Cong-Anh-Khanh Le
  • Marie-Paule Gustin
  • Emmanuel Clavaud
  • Bernard Verrier
  • Fabrice Pirot
  • Françoise Falson
Chapter

Abstract

Industrial accidents, wars and terrorist threats are potential sources of skin contamination by highly toxic chemical warfare agents and manufacturing compounds. Here, we have compared fuller’s earth (FE) time-dependant adsorption capacity and decontamination efficiency of four different formulations for the molecular tracer, 4-cyanophenol (4-CP), in vitro and ex vivo using water decontamination as standard. FE’s adsorption capacity was assessed in vitro for 4-CP aqueous solutions whereas decontamination efficiency was investigated ex vivo by tracking porcine skin 4-CP content using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Decontamination was performed on short exposed porcine skin to 4-CP by application of FE (i) as free powder, (ii) loaded on adhesive tape, (iii) on powdered glove or (iv) in suspension. Removal rate of 4-CP from aqueous solutions correlates with FE’s amount and its contact time. Decontamination efficiency estimated by the percentage of 4-CP recovery from contaminated porcine skin achieved 54% with water, ranged between ~60 and 70% with dry FE and reached ~ 90% with FE suspension. Successful FE’s suspension decontamination, enabling a dramatic reduction of skin contamination after a brief exposure scenario, appears to be rapid and reliable and should be formulated in a new device ready to use for self-application.

Keywords

4-Cyanophenol Adsorption capacity Fuller’s earth Skin decontamination Fuller‘s earth suspension 

Abbreviations

4-CP

4-Cyanophenol

ATR-FTIR

Attenuated total reflectance Fourier transform infrared

CWA

Chemical warfare agents

FE

Fuller’s earth

SC

Stratum corneum

TIC

Toxic industrial chemicals

TS

Tape stripping

UV

Ultraviolet

Notes

Acknowledgments and Disclosures

Cong-Anh-Khanh LE was supported by Explo’RA Sup region Rhône-Alpes.

References

  1. 1.
    Batal M, Boudry I, Mouret S, Cléry-Barraud C, Wartelle J, Bérard I, Douki T. DNA damage in internal organs after cutaneous exposure to sulphur mustard. Toxicol Appl Pharmacol. 2014;278:39–44.  https://doi.org/10.1016/j.taap.2014.04.003.CrossRefPubMedGoogle Scholar
  2. 2.
    Bose P, Bathri R, Sajal De K. CD14 C-159T polymorphism and its association with chronic lung diseases: a pilot study on isocyanate exposed population of Central India. Indian J Hum Genet. 2013;19:188.  https://doi.org/10.4103/0971-6866.116124.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bowonder B. The Bhopal accident. Technol Forecast Soc Chang. 1987;32:169–82.CrossRefGoogle Scholar
  4. 4.
    Burgess JL, Kirk M, Borron SW, Cisek J. Emergency department hazardous materials protocol for contaminated patients. Ann Emerg Med. 1999;34:205–12.  https://doi.org/10.1016/S0196-0644(99)70230-1.CrossRefPubMedGoogle Scholar
  5. 5.
    Carretero MI. Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci. 2002;21:155–63.  https://doi.org/10.1016/S0169-1317(01)00085-0.CrossRefGoogle Scholar
  6. 6.
    Chilcott RP. Managing mass casualties and decontamination. Environ Int. 2014;72:37–45.  https://doi.org/10.1016/j.envint.2014.02.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Cox RD. Decontamination and management of hazardous materials exposure victims in the emergency department. Ann Emerg Med. 1994;23:761–70.CrossRefGoogle Scholar
  8. 8.
    Gaskin S, Pisaniello D, Edwards JW, Bromwich D, Reed S, Logan M, Baxter C. Chlorine and hydrogen cyanide gas interactions with human skin: in vitro studies to inform skin permeation and decontamination in HAZMAT incidents. J Hazard Mater. 2013;262:759–65.  https://doi.org/10.1016/j.jhazmat.2013.09.040.CrossRefPubMedGoogle Scholar
  9. 9.
    Gibbs A, Pooley F. Fuller’s earth (montmorillonite) pneumoconiosis. Occup Environ Med. 1994;51:644–6.CrossRefGoogle Scholar
  10. 10.
    Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharm Res. 2006;23:1850–6.  https://doi.org/10.1007/s11095-006-9011-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot. 1998;76:183–91.  https://doi.org/10.1205/095758298529326.CrossRefGoogle Scholar
  12. 12.
    Joosen MJA, van der Schans MJ, Kuijpers WC, van Helden HPM, Noort D. Timing of decontamination and treatment in case of percutaneous VX poisoning: a mini review. Chem Biol Interact. 2013;203:149–53.  https://doi.org/10.1016/j.cbi.2012.10.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Jung EC, Maibach HI. Animal models for percutaneous absorption. In: Shah VP, Maibach HI, Jenner J, editors. Topical drug bioavailability, bioequivalence, and penetration. New York: Springer New York; 2014. p. 21–40.Google Scholar
  14. 14.
    Kerger BD, Leung H-W, Scott P, Paustenbach DJ, Needham LL, Patterson DG Jr, Gerthoux PM, Mocarelli P. Age-and concentration-dependent elimination half-life of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in Seveso children. Environ Health Perspect. 2006;114:1596–602.  https://doi.org/10.1289/ehp.8884.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mak VHW, Potts RO, Guy RH. Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm Res. 1990;7:835–41.  https://doi.org/10.1023/A:1015960815578.CrossRefPubMedGoogle Scholar
  16. 16.
    Matar H, Larner J, Kansagra S, Atkinson KL, Skamarauskas JT, Amlot R, Chilcott RP. Design and characterisation of a novel in vitro skin diffusion cell system for assessing mass casualty decontamination systems. Toxicol In Vitro. 2014;28:492–501.  https://doi.org/10.1016/j.tiv.2014.01.001.CrossRefPubMedGoogle Scholar
  17. 17.
    McKay G, Otterburn MS, Aga JA. Fuller’s earth and fired clay as adsorbents for dyestuffs. Water Air Soil Pollut. 1985;24:307–22.  https://doi.org/10.1007/BF00161790.CrossRefGoogle Scholar
  18. 18.
    Mircioiu C, Voicu VA, Ionescu M, Miron DS, Radulescu FS, Nicolescu AC. Evaluation of in vitro absorption, decontamination and desorption of organophosphorous compounds from skin and synthetic membranes. Toxicol Lett. 2013;219:99–106.  https://doi.org/10.1016/j.toxlet.2013.03.005.CrossRefPubMedGoogle Scholar
  19. 19.
    Moore CA, Wilkinson SC, Blain PG, Dunn M, Aust GA, Williams FM. Percutaneous absorption and distribution of organophosphates (chlorpyrifos and dichlorvos) following dermal exposure and decontamination scenarios using in vitro human skin model. Toxicol Lett. 2014;229:66–72.  https://doi.org/10.1016/j.toxlet.2014.06.008.CrossRefPubMedGoogle Scholar
  20. 20.
    Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52:103–12.  https://doi.org/10.1016/S0939-6411(01)00166-7.CrossRefGoogle Scholar
  21. 21.
    Okumura T, Seto Y, Fuse A. Countermeasures against chemical terrorism in Japan. Forensic Sci Int. 2013;227:2–6.  https://doi.org/10.1016/j.forsciint.2012.11.008.CrossRefPubMedGoogle Scholar
  22. 22.
    Oubagaranadin JUK, Sathyamurthy N, Murthy ZVP. Evaluation of Fuller’s earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon. J Hazard Mater. 2007;142:165–74.  https://doi.org/10.1016/j.jhazmat.2006.08.001.CrossRefPubMedGoogle Scholar
  23. 23.
    Parsons CL. Fuller’s earth. US Government Printing Office; 1913.Google Scholar
  24. 24.
    Pereira EF, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther. 2014;350:313–21.  https://doi.org/10.1124/jpet.114.214932.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pesatori AC, Consonni D, Bachetti S, Zocchetti C, Bonzini M, Baccarelli A, Bertazzi PA. Short-and long-term morbidity and mortality in the population exposed to dioxin after the “Seveso accident”. Ind Health. 2003;41:127–38.CrossRefGoogle Scholar
  26. 26.
    Pesonen M, Vähäkangas K, Halme M, Vanninen P, Seulanto H, Hemmilä M, Pasanen M, Kuitunen T. Capsaicinoids, chloropicrin and sulfur mustard: possibilities for exposure biomarkers. Front Pharmacol. 2009;1:140.  https://doi.org/10.3389/fphar.2010.00140.CrossRefGoogle Scholar
  27. 27.
    Phuong C, Maibach HI. Recent knowledge: concepts of dermal absorption in relation to skin decontamination. J Appl Toxicol. 2016;36:5–9.  https://doi.org/10.1002/jat.3222.CrossRefPubMedGoogle Scholar
  28. 28.
    Pirot F, Kalia YN, Stinchcomb AL, Keating G, Bunge A, Guy RH. Characterization of the permeability barrier of human skin in vivo. Proc Natl Acad Sci. 1997;94:1562–7.CrossRefGoogle Scholar
  29. 29.
    Potts RO, Golden GM, Francoeur ML, Mak VHW, Guy RH. Mechanism and enhancement of solute transport across the stratum corneum. J Control Release. 1991;15:249–60.  https://doi.org/10.1016/0168-3659(91)90116-U.CrossRefGoogle Scholar
  30. 30.
    Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9.CrossRefGoogle Scholar
  31. 31.
    Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater. 2010;177:70–80.  https://doi.org/10.1016/j.jhazmat.2009.12.047.CrossRefPubMedGoogle Scholar
  32. 32.
    Reddy MB, Stinchcomb AL, Guy RH, Bunge AL. Determining dermal absorption parameters in vivo from tape strip data. Pharm Res. 2002;19:292–8.  https://doi.org/10.1023/A:1014443001802. CrossRefPubMedGoogle Scholar
  33. 33.
    Richards S, Bouazza A. Phenol adsorption in organo-modified basaltic clay and bentonite. Appl Clay Sci. 2007;37:133–42.  https://doi.org/10.1016/j.clay.2006.11.006.CrossRefGoogle Scholar
  34. 34.
    Secrétariat général de la défense nationale. 2008. Circulaire n° 700/SGDN/PSE/PPS du 7 novembre 2008 relative à la doctrine nationale d’emploi des moyens de secours et de soins face à une action terroriste mettant en œuvre des matières chimiques.Google Scholar
  35. 35.
    Stinchcomb AL, Pirot F, Touraille GD, Bunge AL, Guy RH. Chemical uptake into human stratum corneum in vivo from volatile and non-volatile solvents. Pharm Res. 1999;16:1288–93.CrossRefGoogle Scholar
  36. 36.
    Taysse L, Daulon S, Delamanche S, Bellier B, Breton P. Skin decontamination of mustards and organophosphates: comparative efficiency of RSDL and Fuller’s earth in domestic swine. Hum Exp Toxicol. 2007;26:135–41.CrossRefGoogle Scholar
  37. 37.
    Toor M, Jin B. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J. 2012;187:79–88.  https://doi.org/10.1016/j.cej.2012.01.089.CrossRefGoogle Scholar
  38. 38.
    Touitou E, Meidan VM, Horwitz E. Methods for quantitative determination of drug localized in the skin. J Control Release. 1998;56:7–21.  https://doi.org/10.1016/S0168-3659(98)00060-1.CrossRefPubMedGoogle Scholar
  39. 39.
    Warner M, Mocarelli P, Samuels S, Needham L, Brambilla P, Eskenazi B. Dioxin exposure and cancer risk in the Seveso Women’s Health Study. Environ Health Perspect. 2011;119:1700.  https://doi.org/10.1289/ehp.1103720.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yuh-Shan H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics. 2004;59:171–7.  https://doi.org/10.1023/B:SCIE.0000013305.99473.cf.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Annick Roul
    • 1
    • 2
  • Cong-Anh-Khanh Le
    • 1
    • 2
  • Marie-Paule Gustin
    • 3
  • Emmanuel Clavaud
    • 4
  • Bernard Verrier
    • 1
  • Fabrice Pirot
    • 1
    • 2
  • Françoise Falson
    • 1
    • 2
  1. 1.Université de lyon 1, UMR 5305-CNRS/UCBL1; LBTI Lyon and Direction générale de la Sécurité civile et de la gestion des crises Ministère de l’interieurParisFrance
  2. 2.Laboratoire de galénique industrielle ISPB UCBL1 LyonLyonFrance
  3. 3.Université Lyon 1, CNRS UMR 5308,- Inserm U1111 /UCBL1, ENS LyonLyonFrance
  4. 4.Service départemental d’incendie et de secours de la SavoieSaint Alban-LeysseFrance

Personalised recommendations