Recent Knowledge: Human/Animal Skin Decontamination

  • Christina Phuong
  • Howard I. Maibach


Skin decontamination, an important step mitigating percutaneous absorption through the stratum corneum (SC), is a highly complex process. Thus, understanding diffusion mechanisms and measuring dermal absorption rates are critical to protect humans from toxic exposures. Here, highly varied literature is placed in a biological and clinical perspective in regards to decontamination. Recent data have shown multiple layers of SC structural heterogeneity, which result in unique substance partitioning characteristics across the membrane. As such, attempts to model and understand this behavior in alternative in vitro membranes prove difficult. More synthetic and natural membranes are being explored as models for vivo behavior. In addition, commonly accepted decontamination methods are undergoing risk assessment. These recent and varied literature findings update available knowledge regarding skin decontamination and its challenges.


Stratum corneum (SC) Partitioning Detergents Skin wipes Percutaneous penetration Model membrane 


  1. 1.
    Angelova-Fischer I, Dapic I, Hoek AK, Jakasa I, Fischer TW, Zillikens D, Kezic S. Skin barrier integrity and natural moisturising factor levels after cumulative dermal exposure to alkaline agents in atopic dermatitis. Acta Derm Venereol. 2014;64:640–4.CrossRefGoogle Scholar
  2. 2.
    Ansari M, Kazemipour M, Aklamli M. The study of drug permeation through natural membranes. Int J Pharm. 2006;327:6–11.CrossRefGoogle Scholar
  3. 3.
    Blank IH. Factors which influence the water content of the stratum corneum. J Invest Dermatol. 1952;18:433–40.CrossRefGoogle Scholar
  4. 4.
    Skin decontamination of chemical exposures. Cincinnati: National Institute for Occupational Health and Safety; 2005.Google Scholar
  5. 5.
    Bouwstra JA, Dubbelaar FER, Gooris GS, Weerheim AM, Ponec M. The role of ceramide composition in the lipid organisation of the skin barrier. Biochim Biophys Acta. 1999;1419:127–36.CrossRefGoogle Scholar
  6. 6.
    Chan HP, Zhai H, Hui X, Maibach HI. Skin decontamination: principles and perspectives. Toxicol Ind Health. 2012;29:955–68.CrossRefGoogle Scholar
  7. 7.
    Elias PM, Cooper ER, Korc A, Brown BE. Percutaneous transport in relation to stratum corneum structure and lipid composition. J Invest Dermatol. 1981;76:297–301.CrossRefGoogle Scholar
  8. 8.
    Gniadecka M, Faurskov Nielsen O, Christensen DH, Wulf HC. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J Invest Dermatol. 1998;110:393–8.CrossRefGoogle Scholar
  9. 9.
    Gong M, Zhang Y, Weschler CJ. Measurement of phthalates in skin wipes: estimating exposure from dermal absorption. Environ Sci Technol. 2014;48:7428–35.CrossRefGoogle Scholar
  10. 10.
    Gulson B, Anderson P, Taylor A. Surface dust wipes are the best predictors of blood leads in young children with elevated blood lead levels. Environ Res. 2013;126:171–8.CrossRefGoogle Scholar
  11. 11.
    Hansen S, Henning A, Naegel A, Heisig M, Witum G, Neumann D, Kostka KH, Zbytovska J, Lehr CM, Schaefer UF. In-silico model of skin penetration based on experimentally determined input parameters. Part I: experimental determination of partition and diffusion coefficients. Eur J Pharm Biopharm. 2008;68:352–67.CrossRefGoogle Scholar
  12. 12.
    Hsu NY, Lee CC, Wang JY, Li YC, Chang HW, Chen CY, Bornehag CG, Wu PC, Sundell J, Su HJ. Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air. 2012;22:186–99.CrossRefGoogle Scholar
  13. 13.
    Hui X, Lamel S, Qiao P, Maibach HI. Isolated human/animal stratum corneum as a partial model for 15 steps in percutaneous absorption: emphasizing decontamination, part I. J Appl Toxicol. 2013a;33:157–72.CrossRefGoogle Scholar
  14. 14.
    Hui X, Lamel S, Qiao P, Maibach HI. Isolated human and animal stratum corneum as a partial model for the 15 steps of percutaneous absorption: emphasizing decontamination, part II. J Appl Toxicol. 2013b;33:173–82.CrossRefGoogle Scholar
  15. 15.
    Johnson ME, Blankschtein D, Langer R. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci. 1997;86:1162–72.CrossRefGoogle Scholar
  16. 16.
    Kubo A, Ishizaki I, Kubo A, Kawasaki H, Nagao K, Ohashi Y, Amagai M. The stratum corneum comprises three layers with distinct metal-ion barrier properties. Sci Rep. 2013;3:1731.CrossRefGoogle Scholar
  17. 17.
    Leo MS, MS HIM. Percutaneous absorption. In: Vinod SP, Maibach HI, Jenner J, editors. Topical drug bioavailability, bioequivalence, and penetration. New York: Springer; 1993. p. 3–19.Google Scholar
  18. 18.
    Manitz R, Lucht W, Strehmel K, Weiner R, Neubert R. On mathematical modeling of dermal and transdermal drug delivery. J Pharm Sci. 1998;87:873–9.CrossRefGoogle Scholar
  19. 19.
    Mircioiu C, Voicu VA, Ionescu M, Miron DS, Radulescu FS, Nicolescu AC. Evaluation of in vitro absorption, decontamination and desorption of organophosphorous compounds from skin and synthetic membranes. Toxicol Lett. 2013;219:99–106.CrossRefGoogle Scholar
  20. 20.
    Misik J, Pavlikova R, Josse D, Cabal J, Kuca K. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions-evidence for a wash-in effect. Toxicol Mech Methods. 2012a;22:520–5.CrossRefGoogle Scholar
  21. 21.
    Misik J, Pavlikova R, Cabal J, Josse D, Kuca K. In vitro skin permeation of detergents and detergent-based decontamination mixture. Mil Med Sci Lett. 2012b;81:96–9.CrossRefGoogle Scholar
  22. 22.
    Moody RP, Maibach HI. Skin decontamination: importance of the wash-in effect. Food Chem Toxicol. 2016;44:1783–8.CrossRefGoogle Scholar
  23. 23.
    Moore CA, Wilkinson SC, Blain PG, Dunn M, Aust GA, Williams FM. Percutaneous absorption and distribution of organophosphates (chlorpyrifos and dichlorvos) following dermal exposure and decontamination scenarios using in vitro human skin model. Toxicol Lett. 2014;229:66–72.CrossRefGoogle Scholar
  24. 24.
    Naegel A, Hansen S, Neumann D, Lehr CM, Schaefer UF, Wittum G, Heisig M. In-silico model of skin penetration based on experimentally determined input parameters. Part II: mathematical modelling of in-vitro diffusion experiments. Identification of critical input parameters. Eur J Pharm Biopharm. 2008;68:368–79.CrossRefGoogle Scholar
  25. 25.
    Nawale R, Mayee R. Behavior of natural membrane on drug permeation. Int J Pharm Innov. 2013;3:45–54.Google Scholar
  26. 26.
    Nielsen JB. Efficacy of skin wash on dermal absorption: an in vitro study on four model compounds of varying solubility. Int Arch Occup Environ Health. 2010;83:683–90.CrossRefGoogle Scholar
  27. 27.
    Okuda M, Yoshiike T, Ogawa H. Detergent-induced epidermal barrier dysfunction and its prevention. J Dermatol Sci. 2012;30:173–9.CrossRefGoogle Scholar
  28. 28.
    Scheuplein RJ. Permeability of the skin. Handbook of physiology, reactions to environmental agents. Baltimore: Waverly Press Inc; 1975. p. 299–322.Google Scholar
  29. 29.
    Seif S, Hansen S. Measuring the stratum corneum reservoir: desorption kinetics from keratin. J Pharm Sci. 2012;101:3718–28.CrossRefGoogle Scholar
  30. 30.
    Shokri J, Nokhodchi A, Dashbolaghi A, Hassan-Zadeh D, Ghafourian R, Barzegar-Jalali M. The effect of surfactants on the skin penetration of diazepam. Int J Pharm. 2001;228:99–107.CrossRefGoogle Scholar
  31. 31.
    Swartzendruber DC, Wertz PW, Madison KC, Downing DT. Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol. 1987;88:709–13.CrossRefGoogle Scholar
  32. 32.
    Vallet V, Cruz C, Josse D, Bazire A, Lallement G, Boudry I. In vitro percutaneous penetration of organophosphorus compounds using full-thickness and split-thickness pig and human skin. Toxicol in vitro. 2007;21:1182–90.CrossRefGoogle Scholar
  33. 33.
    Watkinson AC, Bunge AL, Hadgraft J, Naik A. Computer simulation of penetrant concentration-depth profiles in the stratum corneum. Int J Pharm. 1992;87:175–82.CrossRefGoogle Scholar
  34. 34.
    Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, Diaz D, Quinn J, Adibi J, Perera FP, Factor-Litvak P. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ Health Perspect. 2012;120:290–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christina Phuong
    • 1
  • Howard I. Maibach
    • 2
  1. 1.Department of DermatologyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of DermatologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations