Advertisement

Ureteroscopy for Treatment of Calculi

  • John Roger BellEmail author
  • Necole M. Streeper
Chapter

Abstract

The focus of this chapter is on the indications, technical considerations, and complications of ureteroscopy for both ureteral and renal calculi. Management decisions regarding ureteral and renal calculi treatment should take the following into consideration: probability of stone-free rate, need for additional procedures, and morbidity related to the treatment modality. During surgical planning, it is also important to consider the following patient characteristics: patient age, pregnancy, coagulopathies or bleeding disorders, and patient body habitus. We will then discuss technical considerations of ureteroscopy. This will include a discussion of the choice of ureteroscope, lithotripter, the use of ureteral access sheaths and whether to leave a ureteral stent. We will briefly discuss techniques for laser lithotripsy with a discussion of dusting compared to basket extraction. A discussion of laser settings and laser fiber selection will follow. The last section of the chapter will review the possible complications from ureteroscopy, including bleeding, infection, ureteral stent discomfort, ureteral injury, need for secondary treatment, renal damage, and ureteral stricture.

Keywords

Ureteroscopy Laser lithotripsy Urolithiasis Dusting Ureteral stent Holmium laser Ureteral access sheath 

References

  1. 1.
    Pickard R, Starr K, MacLennan G, Lam T, Thomas R, Burr J, et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet. 2015;386(9991):341–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ye Z, Zeng G, Yang H, Tang K, Zhang X, Li H, et al. Efficacy and safety of tamsulosin in medical expulsive therapy for distal ureteral stones with renal colic: a multicenter, randomized, double-blind, placebo-controlled trial. Eur Urol. 2017;  https://doi.org/10.1016/j.eururo.2017.10.033. [Epub ahead of print].CrossRefGoogle Scholar
  3. 3.
    Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, et al. Surgical management of stones: American Urological Association/Endourological Society guideline, PART II. J Urol. 2016;196(4):1161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Perlmutter AE, Talug C, Tarry WF, Zaslau S, Mohseni H, Kandzari SJ. Impact of stone location on success rates of endoscopic lithotripsy for nephrolithiasis. Urology. 2008;71(2):214–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, Nadler RB, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005;173(6):2005–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Danilovic A, Cavalanti A, Rocha BA, Traxer O, Torricelli FCM, Marchini GS, et al. Assessment of residual stone fragments after retrograde intrarenal surgery. J Endourol. 2018;32(12):1108–13.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cocuzza M, Colombo JR Jr, Cocuzza AL, Mascarenhas F, Vicentini F, Mazzucchi E, Srougi M. Outcomes of flexible ureteroscopic lithotripsy with holmium laser for upper urinary tract calculi. Int Braz J Urol. 2008;34(2):143–9; discussion 149–50.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Auge BK, Dahm P, Wu NZ, Preminger GM. Ureteroscopic management of lower-pole renal calculi: technique of calculus displacement. J Endourol. 2001;15(8):835–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bozkurt OF, Resorlu B, Yildiz Y, Can CE, Unsal A. Retrograde intrarenal surgery versus percutaneous nephrolithotomy in the management of lower-pole renal stones with a diameter of 15 to 20 mm. J Endourol. 2011;25(7):1131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sener NC, Bas O, Sener E, Zengin K, Ozturk U, Altunkol A, Evliyaoglu Y. Asymptomatic lower pole small renal stones: shock wave lithotripsy, flexible ureteroscopy, or observation? A prospective randomized trial. Urology. 2015;85(1):33–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Segura JW, Preminger GM, Assimos DG, Dretler SP, Kahn RI, Lingeman JE, Macaluso JN Jr. Ureteral Stones Clinical Guidelines Panel summary report on the management of ureteral calculi. The American Urological Association. J Urol. 1997;158(5):1915–21.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hollingsworth JM, Rogers MA, Kaufman SR, Bradford TJ, Saint S, Wei JT, Hollenbeck BK. Medical therapy to facilitate urinary stone passage: a meta-analysis. Lancet. 2006;368(9542):1171–9. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, et al. EAU/AUA nephrolithiasis guideline panel. 2007 guideline for the management of ureteral calculi. J Urol. 2007;178(6):2418–34. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Miller OF, Kane CJ. Time to stone passage for observed ureteral calculi: a guide for patient education. J Urol. 1999;162(3 Part 1):688–90; discussion 690–1.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Aboumarzouk OM, Kata SG, Keeley FX, McClinton S, Nabi G. Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst Rev. 2012;(5):CD006029.  https://doi.org/10.1002/14651858.CD006029.pub4.
  16. 16.
    Lotan Y, Gettman MT, Roehrborn CG, Cadeddu JA, Pearle MS. Management of ureteral calculi: a cost comparison and decision making analysis. J Urol. 2002;167(4):1621–9. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000;55(6):816–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kacker R, Zhao L, Macejko A, Thaxton CS, Stern J, Liu JJ, Nadler RB. Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol. 2008;79(5):1866–71.CrossRefGoogle Scholar
  19. 19.
    Ouzaid I, Al-qahtani S, Dominique S, Hupertan V, Fernandez P, Hermieu JF, et al. A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int. 2012;110(11 Ptrt B):E438–42.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tiryaki T, Azili MN, Özmert S. Ureteroscopy for treatment of ureteral stones in children: factors influencing the outcome. Urology. 2013;81(5):1047–51.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Raza A, Smith G, Moussa S, Tolley D. Ureteroscopy in the management of pediatric urinary tract calculi. J Endourol. 2005;19(2):151–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Desai M. Endoscopic management of stones in children. Curr Opin Urol. 2005;15(2):107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Semins MJ, Trock BJ, Matlaga BR. The safety of ureteroscopy during pregnancy: a systematic review and meta-analysis. J Urol. 2009;181(1):139–43.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lifshitz DA, Lingeman J. Ureteroscopy as a first-line intervention for ureteral calculi in pregnancy. J Endourol. 2002;16(1):19–22.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Watterson JD, Girvan AR, Cook AJ, Beiko DT, Nott L, Auge BK, et al. Safety and efficacy of holmium:YAG laser lithotripsy in patients with bleeding diatheses. J Urol. 2002;168(2):442–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Calvert RC, Burgess NA. Urolithiasis and obesity: metabolic and technical considerations. Curr Opin Urol. 2005;15(2):113–7.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Pareek G, Hedican SP, Lee FT Jr, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology. 2005;66(5):941–4.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol. 2009;23(9):1383–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Aboumarzouk OM, Somani B, Monga M. Safety and efficacy of ureteroscopic lithotripsy for stone disease in obese patients: a systematic review of the literature. BJU Int. 2012;110(8 Part B):E374–80.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chew BH, Zavaglia B, Paterson RF, Teichman JM, Lange D, Zappavigna C, et al. A multicenter comparison of the safety and effectiveness of ureteroscopic laser lithotripsy in obese and normal weight patients. J Endourol. 2013;27(6):710–4.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Riley JM, Stearman L, Troxel S. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J Endourol. 2009;23(9):1395–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Breda A, Ogunyemi O, Leppert JT, Lam JS, Schulam PG. Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater--is this the new frontier? J Urol. 2008;179(3):981–4.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wolf JS Jr, Bennett CJ, Dmochowski RR, Hollenbeck BK, Pearle MS, Schaeffer AJ, Urologic Surgery Antimicrobial Prophylaxis Best Practice Policy Panel. Best practice policy statement on urologic surgery antimicrobial prophylaxis. J Urol. 2008;179(4):1379–90. Erratum in: J Urol. 2008;180(5):2262–3.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    de la Rosette JJ, Skrekas T, Segura JW. Handling and prevention of complications in stone basketing. Eur Urol. 2006;50(5):991–8; discussion 998–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kourambas J, Byrne RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165(3):789–93.PubMedCrossRefGoogle Scholar
  36. 36.
    L’Esperance JO, Ekeruo WO, Scales CD Jr, Marguet CG, Springhart WP, Maloney ME, et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology. 2005;66(2):252–5.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Rehman J, Monga M, Landman J, Lee DI, Felfela T, Conradie MC, et al. Characterization of intrapelvic pressure during ureteropyeloscopy with ureteral access sheaths. Urology. 2003;61(4):713–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013;189(2):580–4.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Delvecchio FC, Auge BK, Brizuela RM, Weizer AZ, Silverstein AD, Lallas CD, et al. Assessment of stricture formation with the ureteral access sheath. Urology. 2003;61(3):518–22; discussion 522.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Johnson GB, Portela D, Grasso M. Advanced ureteroscopy: wireless and sheathless. J Endourol. 2006;20(8):552–5.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Patel SR, McLaren ID, Nakada SY. The ureteroscope as a safety wire for ureteronephroscopy. J Endourol. 2012;26(4):351–4.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dutta R, Vyas A, Landman J, Clayman RV. Death of the safety guidewire. J Endourol. 2017;31(6):619–20.CrossRefGoogle Scholar
  43. 43.
    Dickstein RJ, Kreshover JE, Babayan RK, Wang DS. Is a safety wire necessary during routine flexible ureteroscopy? J Endourol. 2010;24(10):1589–92.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Denstedt JD, Clayman RV. Electrohydraulic lithotripsy of renal and ureteral calculi. J Urol. 1990;143(1):13–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Denstedt JD, Eberwein PM, Singh RR. The Swiss Lithoclast: a new device for intracorporeal lithotripsy. J Urol. 1992;148(3 Pt 2):1088–90.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Webb DR, Kockelburgh R, Johnson WF. The Verapulse holmium surgical laser in clinical urology: a pilot study. Minim Invasive Ther. 1993;2(1):23–6.CrossRefGoogle Scholar
  47. 47.
    Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, Welch AJ. Holmium:YAG lithotripsy: photothermal mechanism. J Endourol. 1999;13(3):181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hecht SL, Wolf JS. Techniques for holmium laser lithotripsy of intrarenal calculi. Urology. 2013;81(2):442–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, et al. Optimal power settings for holmium:YAG lithotripsy. J Urol. 2012;187(3):914–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Spore SS, Teichman JM, Corbin NS, Champion PC, Williamson EA, Glickman RD. Holmium:YAG lithotripsy: optimal power settings. J Endourol. 1999;13(8):559–66.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Patel AP, Knudsen BE. Optimizing use of the holmium:YAG laser for surgical management of urinary lithiasis. Curr Urol Rep. 2014;15(4):397.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kronenberg P, Traxer O. Update on lasers in urology 2014: current assessment on holmium:yttrium–aluminum–garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol. 2015;33(4):463–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bell JR, Penniston KL, Nakada SY. In vitro comparison of holmium lasers: evidence for shorter fragmentation time and decreased retropulsion using a modern variable pulse laser. Urology. 2017;107:37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bell JR, Penniston KL, Nakada SY. In vitro comparison of stone fragmentation when using various settings with modern variable pulse holmium lasers. J Endourol. 2017;31(10):1067–72.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Wollin DA, Ackerman A, Yang C, Chen T, Simmons WN, Preminger GM, Lipkin ME. Variable pulse duration from a new holmium:YAG laser: the effect on stone comminution, fiber tip degradation, and retropulsion in a dusting model. Urology. 2017;103:47–51.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Maxwell AD, MacConaghy B, Harper JD, Aldoukhi AH, Hall TL, Roberts WW. Simulation of laser lithotripsy-induced heating in the urinary tract. J Endourol. 2019;33(2):113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Aldoukhi AH, Ghani KR, Hall TL, Roberts WW. Thermal response to high-power holmium laser lithotripsy. J Endourol. 2017;31(12):1308–12.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Humphreys MR, Shah OD, Monga M, Chang YH, Krambeck AE, Sur RL, et al. Dusting versus basketing during ureteroscopy–which technique is more efficacious? A prospective multicenter trial from the EDGE Research Consortium. J Urol. 2018;199(5):1272–6.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lusch A, Heidari E, Okhunov Z, Osann K, Landman J. Evaluation of contemporary holmium laser fibers for performance characteristics. J Endourol. 2016;30(5):567–73.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kronenberg P, Traxer O. The truth about laser fiber diameters. Urology. 2014;84(6):1301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Talso M, Emiliani E, Haddad M, Berthe L, Baghdadi M, Montanari E, Traxer O. Laser fiber and flexible ureterorenoscopy: the safety distance concept. J Endourol. 2016;30(12):1269–74.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pais VM Jr, Smith RE, Stedina EA, Rissman CM. Does omission of ureteral stents increase risk of unplanned return visit? A systematic review and meta-analysis. J Urol. 2016;196(5):1458–66.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Muslumanoglu AY, Fuglsig S, Frattini A, Labate G, Nadler RB, Martov A, et al. Risks and benefits of postoperative double-J stent placement after ureteroscopy: results from the clinical research office of endourological society ureteroscopy global study. J Endourol. 2017;31(5):446–51.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hollenbeck BK, Schuster TG, Faerber GJ, Wolf JS Jr. Routine placement of ureteral stents is unnecessary after ureteroscopy for urinary calculi. Urology. 2001;57(4):639–43.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chen YT, Chen J, Wong WY, Yang SS, Hsieh CH, Wang CC. Is ureteral stenting necessary after uncomplicated ureteroscopic lithotripsy? A prospective, randomized controlled trial. J Urol. 2002;167(5):1977–80.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Pengfei S, Yutao L, Jie Y, Wuran W, Yi D, Hao Z, Jia W. The results of ureteral stenting after ureteroscopic lithotripsy for ureteral calculi: a systematic review and meta-analysis. J Urol. 2011;186(5):1904–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Jeon SS, Choi YS, Hong JH. Determination of ideal stent length for endourologic surgery. J Endourol. 2007;21(8):906–10.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Barrett K, Foell K, Lantz A, Ordon M, Lee JY, Pace KT, Honey RJ. Best stent length predicted by simple CT measurement rather than patient height. J Endourol. 2016;30(9):1029–32.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Holden T, Pedro RN, Hendlin K, Durfee W, Monga M. Evidence-based instrumentation for flexible ureteroscopy: a review. J Endourol. 2008;22(7):1423–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pasqui F, Dubosq F, Tchala K, Tligui M, Gattegno B, Thibault P, Traxer O. Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. Eur Urol. 2004;45(1):58–64.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hendlin K, Weiland D, Monga M. Impact of irrigation systems on stone migration. J Endourol. 2008;22(3):453–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Carey RI, Gomez CS, Maurici G, Lynne CM, Leveillee RJ, Bird VG. Frequency of ureteroscope damage seen at a tertiary care center. J Urol. 2006;176(2):607–10; discussion 610.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Carey RI, Martin CJ, Knego JR. Prospective evaluation of refurbished flexible ureteroscope durability seen in a large public tertiary care center with multiple surgeons. Urology. 2014;84(1):42–5.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Molina W, Warncke J, Donalisio da Silva R, Gustafson D, Nogueira L, Kim F. PD53-03 cost analysis of utilization of disposable flexible ureteroscopes in high risk for breakage cases (abstract). J Urol. 2018;199(4 Suppl):e1047.Google Scholar
  75. 75.
    Schuster TG, Hollenbeck BK, Faerber GJ, Wolf JS Jr. Complications of ureteroscopy: analysis of predictive factors. J Urol. 2001;166(2):538–40.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Johnson DB, Pearle MS. Complications of ureteroscopy. Urol Clin North Am. 2004;31(1):157–71. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lamb AD, Vowler SL, Johnston R, Dunn N, Wiseman OJ. Meta-analysis showing the beneficial effect of α-blockers on ureteric stent discomfort. BJU Int. 2011;108(11):1894–902.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Yakoubi R, Lemdani M, Monga M, Villers A, Koenig P. Is there a role for α-blockers in ureteral stent related symptoms? A systematic review and meta-analysis. J Urol. 2011;186(3):928–34.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rane A, Saleemi A, Cahill D, Sriprasad S, Shrotri N, Tiptaft R. Have stent-related symptoms anything to do with placement technique? J Endourol. 2001;15(7):741–5.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of UrologyUniversity of KentuckyLexingtonUSA
  2. 2.Division of Urology, Department of SurgeryPenn State Health Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations