Advertisement

New Definition of Quality-Scale Robustness for Image Processing Algorithms, with Generalized Uncertainty Modeling, Applied to Denoising and Segmentation

  • Antoine VacavantEmail author
  • Marie-Ange Lebre
  • Hugo Rositi
  • Manuel Grand-Brochier
  • Robin Strand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11455)

Abstract

Robustness is an important concern in machine learning and pattern recognition, and has attracted a lot of attention from technical and scientific viewpoints. Actually, the robustness models the capacity of a computerized approach to resist to perturbing phenomena and data uncertainties, and generate common artefact while designing algorithms. However, this question has not been dealt in depth in such a way for image processing tasks. In this article, we propose a novel definition of robustness dedicated to image processing algorithms. By considering a generalized model of image data uncertainty, we encompass the classic additive Gaussian noise alteration that we study through the evaluation of image denoising algorithms, but also more complex phenomena such as shape variability, which is considered for liver volume segmentation from medical images. Furthermore, we refine our evaluation of robustness wrt. our previous work by introducing a novel quality-scale definition. To do so, we calculate the worst loss of quality for a given algorithm over a set of uncertainty scales, together with the scale where this drop appears. This new approach permits to reveal any algorithm’s weakness, and for which kind of corrupted data it may happen.

Keywords

Image processing Robustness Image denoising Liver segmentation 

References

  1. 1.
    Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  3. 3.
    Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Security and Privacy (2017)Google Scholar
  4. 4.
    Cartade, C., Mercat, C., Malgouyres, R., Samir, C.: Mesh parameterization with generalized discrete conformal maps. J. Math. Imaging Vis. 46(1), 1–11 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coupé, P., Manjón, J., Gedamu, E., Arnold, D., Robles, M., Collins, D.: Robust rician noise estimation for MR images. Med. Image Anal. 14(4), 483–493 (2010)CrossRefGoogle Scholar
  6. 6.
    Fawzi, A., Moosavi-Dezfooli, S.M., Frossard, P.: The robustness of deep networks: a geometrical perspective. IEEE Signal Process. Mag. 34, 50–62 (2017)CrossRefGoogle Scholar
  7. 7.
    Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Regularized shock filters and complex diffusion. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 399–413. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-47969-4_27CrossRefGoogle Scholar
  8. 8.
    Glatard, T., et al.: A virtual imaging platform for multi-modality medical image simulation. IEEE Trans. Med. Imaging 32(1), 110–118 (2013)CrossRefGoogle Scholar
  9. 9.
    Gudbjartsson, H., Patz, S.: The rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)CrossRefGoogle Scholar
  10. 10.
    He, B., et al.: Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model. Med. Phys. 43(5), 2421–2434 (2016)CrossRefGoogle Scholar
  11. 11.
    Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  12. 12.
    Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 27(1), 13–18 (1979)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. 29(4), 100:1–100:10 (2010)CrossRefGoogle Scholar
  15. 15.
    Lebre, M.-A., et al.: Medical image processing and numerical simulation for digital hepatic parenchymal blood flow. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 99–108. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68127-6_11CrossRefGoogle Scholar
  16. 16.
    Lebrun, M., Colom, M., Buades, A., Morel, J.: Secrets of image denoising cuisine. Acta Numer. 21, 475–576 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Limare, N.: Reproducible research, software quality, online interfaces and publishing for image processing. Ph.D. thesis, École normale supérieure de Cachan, France (2012)Google Scholar
  18. 18.
    Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote. Sens. 28(5), 823–870 (2007)CrossRefGoogle Scholar
  19. 19.
    Malmberg, F., Nordenskjöld, R., Strand, R., Kullberg, J.: Smartpaint: a tool for interactive segmentation of medical volume images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 5(1), 36–44 (2014)CrossRefGoogle Scholar
  20. 20.
    Meer, P.: From a robust hierarchy to a hierarchy of robustness. In: Davis, L.S. (ed.) Foundations of Image Understanding. The Springer International Series in Engineering and Computer Science, vol. 628, pp. 323–347. Springer, Boston (2001).  https://doi.org/10.1007/978-1-4615-1529-6_11CrossRefzbMATHGoogle Scholar
  21. 21.
    Meer, P.: Robust techniques for computer vision. In: Emerging Topics in Computer Vision, pp. 107–190. Prentice Hall (2004)Google Scholar
  22. 22.
    Menze, B., et al. (eds.): Medical Computer Vision: Algorithms for Big Data. LNCS, vol. 8848. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13972-2CrossRefGoogle Scholar
  23. 23.
    Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Thomas, R., McSharry, P.: Big Data Revolution: What Farmers, Doctors and Insurance Agents Teach Us About Discovering Big Data Patterns. Wiley, Hoboken (2015)Google Scholar
  26. 26.
    Toennies, K.D.: Guide to Medical Image Analysis. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2751-2CrossRefGoogle Scholar
  27. 27.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision, Bombay, India (1998)Google Scholar
  28. 28.
    Vacavant, A.: A novel definition of robustness for image processing algorithms. In: Kerautret, B., Colom, M., Monasse, P. (eds.) RRPR 2016. LNCS, vol. 10214, pp. 75–87. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56414-2_6CrossRefGoogle Scholar
  29. 29.
    Vacavant, A.: Robust image processing: Definition, algorithms and evaluation. Université Clermont Auvergne, France, Habilitation (2018)Google Scholar
  30. 30.
    Vacavant, A., Albouy-Kissi, A., Menguy, P., Solomon, J.: Fast smoothed shock filtering. In: IEEE International Conference on Pattern Recognition, Tsukuba, Japan (2012)Google Scholar
  31. 31.
    Wang, Z.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar
  32. 32.
    Weickert, J.: Coherence-enhancing shock filters. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 1–8. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45243-0_1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antoine Vacavant
    • 1
    Email author
  • Marie-Ange Lebre
    • 1
  • Hugo Rositi
    • 1
  • Manuel Grand-Brochier
    • 1
  • Robin Strand
    • 2
  1. 1.Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut PascalClermont-FerrandFrance
  2. 2.CBAUppsala UniversitetUppsalaSweden

Personalised recommendations