Advertisement

Flax Small RNAs

  • Alexey A. Dmitriev
  • Anna V. Kudryavtseva
  • Nataliya V. Melnikova
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 23)

Abstract

Small RNAs (short RNA molecules, generally, 20-24 nucleotides in length) are the key regulators of numerous biological processes in plants. The most extensively studied small RNAs in plant species are microRNAs (miRNAs), which regulate gene expression at the post-transcriptional level. In flax, miRNAs were predicted on the basis of genome and transcriptome sequencing data. Moreover, high-throughput sequencing of small RNAs and evaluation of miRNA levels using quantitative PCR allowed determination of miRNAs in various tissues and under stress conditions and identification of differentially expressed miRNAs. Furthermore, the target genes of miRNAs were predicted. Obtained results brought important knowledge about the regulation of cell processes in flax plants via miRNA. However, further analysis covering more classes of small RNAs is needed.

References

  1. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15(1):78–91PubMedPubMedCentralCrossRefGoogle Scholar
  2. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159PubMedCrossRefGoogle Scholar
  3. Barozai MYK (2012) In silico identification of micrornas and their targets in fiber and oil producing plant flax (Linum usitatissimum L.). Pak J Bot 44:1357–1362Google Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  5. Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY (2013) Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): characterization of flax miRNA genes. Planta 237(4):1149–1161PubMedCrossRefGoogle Scholar
  6. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503PubMedCrossRefGoogle Scholar
  7. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247PubMedCrossRefGoogle Scholar
  10. Couzigou JM, Combier JP (2016) Plant microRNAs: key regulators of root architecture and biotic interactions. New Phytol 212(1):22–35PubMedCrossRefGoogle Scholar
  11. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue):W155–W159PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12(2):115–121PubMedCrossRefGoogle Scholar
  13. Datta R, Paul S (2015) Plant microRNAs: master regulator of gene expression mechanism. Cell Biol Int 39(11):1185–1190PubMedCrossRefGoogle Scholar
  14. Die JV, Roman B (2012) RNA quality assessment: a view from plant qPCR studies. J Exp Bot 63(17):6069–6077PubMedCrossRefGoogle Scholar
  15. Fenart S, Ndong YP, Duarte J, Riviere N, Wilmer J, van Wuytswinkel O, Lucau A, Cariou E, Neutelings G, Gutierrez L et al (2010) Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genomics 11:592PubMedPubMedCentralCrossRefGoogle Scholar
  16. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8):941–946PubMedCrossRefGoogle Scholar
  17. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144PubMedCrossRefGoogle Scholar
  18. Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions – beyond repression of gene expression. Nat Rev Genet 15(9):599–612PubMedCrossRefGoogle Scholar
  19. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531PubMedCrossRefGoogle Scholar
  20. Henderson IR, Jacobsen SE (2008) Sequencing sliced ends reveals microRNA targets. Nat Biotechnol 26(8):881–882PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ito H (2013) Small RNAs and regulation of transposons in plants. Genes Genet Syst 88(1):3–7PubMedCrossRefGoogle Scholar
  22. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73PubMedCrossRefGoogle Scholar
  23. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12(2):206–212PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  25. Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231(2):303–313PubMedCrossRefGoogle Scholar
  26. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15(16):1501–1507PubMedPubMedCentralCrossRefGoogle Scholar
  27. Li J, Reichel M, Li Y, Millar AA (2014) The functional scope of plant microRNA-mediated silencing. Trends Plant Sci 19(12):750–756PubMedCrossRefGoogle Scholar
  28. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056PubMedCrossRefGoogle Scholar
  29. Ma X, Tang Z, Qin J, Meng Y (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12(7):709–719PubMedPubMedCentralCrossRefGoogle Scholar
  30. Melnikova NV, Belenikin MS, Bolsheva NL, Dmitriev AA, Speranskaya AS, Krinitsina AA, Samatadze TE, Amosova AV, Muravenko OV, Zelenin AV et al (2014) Flax inorganic phosphate deficiency responsive miRNAs. J Agric Sci 6(6):156–160Google Scholar
  31. Melnikova NV, Dmitriev AA, Belenikin MS, Speranskaya AS, Krinitsina AA, Rachinskaia OA, Lakunina VA, Krasnov GS, Snezhkina AV, Sadritdinova AF et al (2015) Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L. Biochimie 109:36–41PubMedCrossRefGoogle Scholar
  32. Melnikova NV, Dmitriev AA, Belenikin MS, Koroban NV, Speranskaya AS, Krinitsina AA, Krasnov GS, Lakunina VA, Snezhkina AV, Sadritdinova AF et al (2016) Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front Plant Sci 7:399PubMedPubMedCentralCrossRefGoogle Scholar
  33. Moss TY, Cullis CA (2012) Computational prediction of candidate microRNAs and their targets from the completed Linum usitatissimum genome and EST database. J Nucleic Acids Investig 3:e2, 9–17CrossRefGoogle Scholar
  34. Neutelings G, Fenart S, Lucau-Danila A, Hawkins S (2012) Identification and characterization of miRNAs and their potential targets in flax. J Plant Physiol 169(17):1754–1766PubMedCrossRefGoogle Scholar
  35. Oulas A, Karathanasis N, Louloupi A, Pavlopoulos GA, Poirazi P, Kalantidis K, Iliopoulos I (2015) Prediction of miRNA targets. Methods Mol Biol 1269:207–229PubMedCrossRefGoogle Scholar
  36. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520PubMedCrossRefGoogle Scholar
  37. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  38. Salone V, Rederstorff M (2015) Stem-loop RT-PCR based quantification of small non-coding RNAs. Methods Mol Biol 1296:103–108PubMedCrossRefGoogle Scholar
  39. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527PubMedCrossRefGoogle Scholar
  40. Shao C, Chen M, Meng Y (2013) A reversed framework for the identification of microRNA-target pairs in plants. Brief Bioinform 14(3):293–301PubMedCrossRefGoogle Scholar
  41. Shen Y, Tian F, Chen Z, Li R, Ge Q, Lu Z (2015) Amplification-based method for microRNA detection. Biosens Bioelectron 71:322–331PubMedCrossRefGoogle Scholar
  42. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  43. Song C, Fang J, Wang C, Guo L, Nicholas KK, Ma Z (2010) MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs. PLoS One 5(6):e10861PubMedPubMedCentralCrossRefGoogle Scholar
  44. Steele AD (1991) Shift in genomic RNA patterns of human rotaviruses isolated from white children in South Africa. S Afr Med J 79(3):143–145PubMedGoogle Scholar
  45. Sun X, Zhang Y, Zhu X, Korir NK, Tao R, Wang C, Fang J (2014) Advances in identification and validation of plant microRNAs and their target genes. Physiol Plant 152(2):203–218PubMedCrossRefGoogle Scholar
  46. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tang G (2010) Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol 21(8):782–789PubMedCrossRefGoogle Scholar
  48. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853PubMedPubMedCentralCrossRefGoogle Scholar
  49. Tong L, Xue H, Xiong L, Xiao J, Zhou Y (2015) Improved RT-PCR assay to quantitate the pri-, pre-, and mature microRNAs with higher efficiency and accuracy. Mol Biotechnol 57(10):939–946PubMedCrossRefGoogle Scholar
  50. Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M et al (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72(3):461–473PubMedCrossRefGoogle Scholar
  52. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475PubMedCrossRefGoogle Scholar
  53. Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72(1):87–99PubMedCrossRefGoogle Scholar
  54. Yang LH, Wang SL, Tang LL, Liu B, Ye WL, Wang LL, Wang ZY, Zhou MT, Chen BC (2014) Universal stem-loop primer method for screening and quantification of microRNA. PLoS One 9(12):e115293PubMedPubMedCentralCrossRefGoogle Scholar
  55. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307(5711):932–935PubMedPubMedCentralCrossRefGoogle Scholar
  56. Yu Y, Wu G, Yuan H, Cheng L, Zhao D, Huang W, Zhang S, Zhang L, Chen H, Zhang J et al (2016) Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol 16(1):124PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761PubMedPubMedCentralCrossRefGoogle Scholar
  58. Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(Database issue):D806–D813PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey A. Dmitriev
    • 1
  • Anna V. Kudryavtseva
    • 1
  • Nataliya V. Melnikova
    • 1
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations