Advertisement

A Global Classifier Implementation for Detecting Anomalies by Using One-Class Techniques over a Laboratory Plant

  • Esteban JoveEmail author
  • José-Luis Casteleiro-Roca
  • Héctor Quintián
  • Juan-Albino Méndez-Pérez
  • José Luis Calvo-Rolle
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1004)

Abstract

The energy and the product optimization of the industrial processes has played a key role during last decades. In this field, the appearance of any kind of anomaly may represent an important issue. Then, anomaly detection in an industrial plant is specially relevant.

In this work, the anomaly detection over level plant control is achieved, by using three one class intelligent techniques. Different global classifiers are trained and tested with real data from a laboratory plant, whose main aim is to control the tank liquid level. The results of each classifier are assessed and validated with real anomalies, leading to good results, in general terms.

Keywords

Fault detection One-class ACH Autoencoder SVM 

References

  1. 1.
    Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019)CrossRefGoogle Scholar
  2. 2.
    Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)CrossRefGoogle Scholar
  3. 3.
    Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Logic 13(1), 37–47 (2015)CrossRefGoogle Scholar
  4. 4.
    Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: International Workshop on Multiple Classifier Systems, pp. 106–115. Springer (2011)Google Scholar
  5. 5.
    Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: Sansone, C., Kittler, J., Roli, F. (eds.) Multiple Classifier Systems, pp. 106–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Casteleiro-Roca, J.L., Jove, E., Gonzalez-Cava, J.M., Méndez Pérez, J.A., Calvo-Rolle, J.L., Blanco Alvarez, F.: Hybrid model for the ani index prediction using remifentanil drug and emg signal. Neural Comput. Appl. (2018).  https://doi.org/10.1007/s00521-018-3605-z
  7. 7.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In: Proceedings of the 2001 International Conference on Image Processing, vol. 1, pp. 34–37. IEEE (2001)Google Scholar
  9. 9.
    Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2000)zbMATHGoogle Scholar
  10. 10.
    Fernández-Francos, D., Fontenla-Romero, Ó., Alonso-Betanzos, A.: One-class convex hull-based algorithm for classification in distributed environments. IEEE Trans. Syst. Man Cybernet. Syst. 1–11 (2018)Google Scholar
  11. 11.
    González, G., Angelo, C.D., Forchetti, D., Aligia, D.: Diagnóstico de fallas en el convertidor del rotor en generadores de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informática industrial 15(3), 297–308 (2018). https://polipapers.upv.es/index.php/RIAI/article/view/9042CrossRefGoogle Scholar
  12. 12.
    Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  13. 13.
    Hobday, M.: Product complexity, innovation and industrial organisation. Res. Policy 26(6), 689–710 (1998)CrossRefGoogle Scholar
  14. 14.
    Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)CrossRefGoogle Scholar
  15. 15.
    Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2014, pp. 275–285. Springer International Publishing, Cham (2014)Google Scholar
  16. 16.
    Jove, E., Antonio Lopez-Vazquez, J., Isabel Fernandez-Ibanez, M., Casteleiro-Roca, J.L., Luis Calvo-Rolle, J.: Hybrid intelligent system to predict the individual academic performance of engineering students. Int. J. Eng. Educ. 34(3), 895–904 (2018)Google Scholar
  17. 17.
    Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.L., Méndez-Pérez, J.A., Antonio Reboso-Morales, J., Javier Pérez-Castelo, F., Javier de Cos Juez, F., Luis Calvo-Rolle, J.: Modelling the hypnotic patient response in general anaesthesia using intelligent models. Logic J. IGPL (2018)Google Scholar
  18. 18.
    Moreno-Fernandez-de Leceta, A., Lopez-Guede, J.M., Ezquerro Insagurbe, L., Ruiz de Arbulo, N., Granã, M.: A novel methodology for clinical semantic annotations assessment. Logic J. IGPL 26(6), 569–580 (2018). http://dx.doi.org/10.1093/jigpal/jzy021
  19. 19.
    Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077–3081. IEEE (2003)Google Scholar
  20. 20.
    Manuel Vilar-Martinez, X., Aurelio Montero-Sousa, J., Luis Calvo-Rolle, J., Luis Casteleiro-Roca, J.: Expert system development to assist on the verification of “tacan” system performance. Dyna 89(1), 112–121 (2014)Google Scholar
  21. 21.
  22. 22.
    MathWorks: fitcsvm, 29 January 2019. https://es.mathworks.com/help/stats/fitcsvm.html
  23. 23.
  24. 24.
    Miljković, D.: Fault detection methods: a literature survey. In: MIPRO, 2011 Proceedings of the 34th International Convention, pp. 750–755. IEEE (2011)Google Scholar
  25. 25.
    de la Portilla, M.P., Eiro, A.L.P., Sánchez, J.A.S., Herrera, R.M.: Modelado dinámico y control de un dispositivo sumergido provisto de actuadores hidrostáticos. Revista Iberoamericana de Automática e Informática industrial 15(1), 12–23 (2017). https://polipapers.upv.es/index.php/RIAI/article/view/8824CrossRefGoogle Scholar
  26. 26.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (2012)zbMATHGoogle Scholar
  27. 27.
    Quintián, H., Corchado, E.: Beta scale invariant map. Eng. Appl. Artif. Intell. 59, 218–235 (2017)CrossRefGoogle Scholar
  28. 28.
    Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
  29. 29.
    Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)Google Scholar
  30. 30.
    Segovia, F., Górriz, J.M., Ramírez, J., Martinez-Murcia, F.J., García-Pérez, M.: Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders. Logic J. IGPL 26(6), 618–628 (2018). http://dx.doi.org/10.1093/jigpal/jzy026
  31. 31.
    Shalabi, L.A., Shaaban, Z.: Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International Conference on Dependability of Computer Systems, pp. 207–214, May 2006Google Scholar
  32. 32.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wojciechowski, S.: A comparison of classification strategies in rule-based classifiers. Logic J. IGPL 26(1), 29–46 (2018). http://dx.doi.org/10.1093/jigpal/jzx053MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zeng, Z., Wang, J.: Advances in Neural Network Research and Applications, 1st edn. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Esteban Jove
    • 1
    • 2
    Email author
  • José-Luis Casteleiro-Roca
    • 1
  • Héctor Quintián
    • 1
  • Juan-Albino Méndez-Pérez
    • 2
  • José Luis Calvo-Rolle
    • 1
  1. 1.Department of Industrial EngineeringUniversity of A CoruñaFerrol, A CoruñaSpain
  2. 2.Department of Computer Science and System EngineeringUniversity of La LagunaS/C de TenerifeSpain

Personalised recommendations