Advertisement

Icytomine: A User-Friendly Tool for Integrating Workflows on Whole Slide Images

  • Daniel Felipe Gonzalez Obando
  • Diana Mandache
  • Jean-Christophe Olivo-Marin
  • Vannary Meas-YedidEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11435)

Abstract

We present Icytomine, a user-friendly software platform for processing large images from slide scanners. Icytomine integrates in one unique framework the tools and algorithms that were developed independently on Icy and Cytomine platforms to visualise and process digital pathology images. We illustrate the power of this new platform through the design of a dedicated program that uses convolutional neural network to detect and classify glomeruli in kidney biopsies coming from a multicentric clinical study. We show that by streamlining the analytical capabilities of Icy with the AI tools found in Cytomine, we achieved highly promising results.

Keywords

Whole slide imaging Reproducible research Open-source plugin Convolutional neural network Fine-tuning Detection of glomeruli 

References

  1. 1.
    Fuchs, T.J., Buhmann, J.M.: Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35(7–8), 515–530 (2011)CrossRefGoogle Scholar
  2. 2.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  3. 3.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  4. 4.
    Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deroulers, C., Ameisen, D., Badoual, M., Gerin, C., Granier, A., Lartaud, M.: Analyzing huge pathology images with open source software. Diagn. Pathol. 8(1), 1–8 (2013)CrossRefGoogle Scholar
  6. 6.
    Nelissen, B.G.L., Van Herwaarden, J.A., Moll, F.L., Van Diest, P.J., Pasterkamp, G.: SlideToolkit: an assistive toolset for the histological quantification of whole slide images. PLoS One 9(11), e110289 (2014)CrossRefGoogle Scholar
  7. 7.
    Bankhead, P., et al.: QuPath: open source software for digital pathology image analysis. Sci. Rep. 7(1), 16878 (2017)CrossRefGoogle Scholar
  8. 8.
    Della Mea, V., Baroni, G.L., Pilutti, D., Di Loreto, C.: SlideJ: an ImageJ plugin for automated processing of whole slide images. PLoS One 12, e0180540 (2017)CrossRefGoogle Scholar
  9. 9.
    Marée, R., Dallongeville, S., Olivo-Marin, J.-C., Meas-Yedid, V.: An approach for detection of glomeruli in multisite digital pathology, pp. 1033–1036, April 2016Google Scholar
  10. 10.
    de Chaumont, F., et al.: ICY: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9(7), 690–6 (2012)CrossRefGoogle Scholar
  11. 11.
    Marée, R., et al.: Collaborative analysis of multi-gigapixel imaging data using cytomine. Bioinformatics 32(9), 1395–1401 (2016)CrossRefGoogle Scholar
  12. 12.
    Marsh, J.N., et al.: Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE Trans. Med. Imaging 37, 1 (2018)CrossRefGoogle Scholar
  13. 13.
    Gadermayr, M., Dombrowski, A.-K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting whole slide images of the kidney. CoRR, vol. abs/1708.00251 (2017)Google Scholar
  14. 14.
    Gadermayr, M., Eschweiler, D., Jeevanesan, A., Klinkhammer, B.M., Boor, P.: Segmenting renal whole slide images virtually without training data. Comput. Biol. Med. 90, 88–97 (2017)CrossRefGoogle Scholar
  15. 15.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least-squares fitting of ellipses. IEEE Trans. PAMI 21(5), 476–480 (1999). MayCrossRefGoogle Scholar
  16. 16.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59, 2004 (2004)CrossRefGoogle Scholar
  17. 17.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception Architecture for Computer Vision. ArXiv e-prints, December 2015Google Scholar
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. ArXiv e-prints, December 2015Google Scholar
  19. 19.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ArXiv e-prints, September 2014Google Scholar
  20. 20.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: 2017 IEEE ICCV, pp. 2980–2988 (2017)Google Scholar
  21. 21.
    Abdulla, W.: Mask R-CNN for object detection and instance segmentation on keras and tensorflow (2017). https://github.com/matterport/Mask_RCNN

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Felipe Gonzalez Obando
    • 1
  • Diana Mandache
    • 1
  • Jean-Christophe Olivo-Marin
    • 1
  • Vannary Meas-Yedid
    • 1
    Email author
  1. 1.Institut Pasteur, Bioimage Analysis Unit-CNRS UMR 3691ParisFrance

Personalised recommendations