Three-Dimensional Bioprinting: Safety, Ethical, and Regulatory Considerations

  • Ippokratis PountosEmail author
  • Nazzar Tellisi
  • Nureddin Ashammakhi


Three-dimensional (3D) bioprinting of tissues or organs holds great potential for several clinical applications in the future. Similar to all new biotechnologies, 3D bioprinting possesses both benefits and risks. Consequently, several ethical, safety, and regulatory issues have to be addressed. Ethical concerns identified involve the ownership of prototypes, harvesting and type of cells and biomaterials, research as well as commercialization of produced constructs. Safety concerns identified are linked to the biocompatibility of bioinks, ex vivo manipulation of cells, and maintenance of aseptic conditions. Regulations are vague and are under the provisions made for tissue engineering. Three-dimensional bioprinting should be considered beyond a conceptual therapy; it would require ethical oversight and the introduction of a robust regulatory framework.


3D bioprinting Ethics Safety Tissue regeneration Organs 


Conflict of Interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this chapter.


  1. 1.
    Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tellisi N, Ashammakhi NA, Billi F, Kaarela O (2018) Three dimensional printed bone implants in the clinic. J Craniofac Surg 29:2363–2367PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ashammakhi N, Kaarela O (2018) Three-dimensional bioprinting can help bone. J Craniofac Surg 29:9–11CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wolinsky H (2014) Printing organs cell-by-cell: 3-D printing is growing in popularity, but how should we regulate the application of this new technology to health care? EMBO Rep 15:836–838CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tran JL (2015) Patenting bioprinting. Harvard journal of law and technology digest, 2015 symposiumGoogle Scholar
  8. 8.
    Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A (2019) Minimally invasive and regenerative therapeutics. Adv Mater 31(1):e1804041CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ashammakhi N, Ahadian S, Pountos I, Hu S-K, Tellisi N, Bandaru P, Ostrovidov S, Dokmeci M, Khademhosseini A (2019) In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 21(2):42CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ashammakhi N, Kaarela O, Hasan A, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A (2019) Advancing frontiers in bone bioprinting. Adv Healthc Mater 8(7):e1801048CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Recommendations of the IFAA.
  12. 12.
    Awaya T (2005) Common ethical issues in regenerative medicine. J Int Bioethique 16:69–75CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Black J (1997) Thinking twice about “tissue engineering” [Ethical issues]. Eng Med Biol Mag IEEE 16:102–104CrossRefGoogle Scholar
  14. 14.
    Samanta A, Samanta JO, Price D (2004) Who owns my body—thee or me? The human tissue story continues. Clin Med 4:327–331CrossRefGoogle Scholar
  15. 15.
    Prockop DJ, Olson SD (2007) Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood 109:3147–3151CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wilmut I (2004) The moral imperative for human cloning. New Sci 181:16–17PubMedPubMedCentralGoogle Scholar
  17. 17.
    Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH, Gjedde A, Bunney BS (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327:1541–1548CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi JX, Lone T, Zhang YB, Snyder JA, Wells TH (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327:1549–1555CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Collins S (2001) Tissue banks: is the Federal Government’s oversight adequate? Hearing before the Committee on Governmental Affairs, US Senate, vol 264. Diane Publishing Company, Washington, DCGoogle Scholar
  20. 20.
    Pirnay JP, Vanderkelen A, Zizi M, De Vos D, Rose T, Laire G, Ectors N, Verbeken G (2010) Human cells and tissues: the need for a global ethical framework. Bull World Health Organ 88:870–872CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    European Group on Ethics in Science and New Technologies (2002) Opinion 16: ethical aspects of patenting inventions involving human stem cells, 7 May 2002, European Commission, BrusselsGoogle Scholar
  22. 22.
    Ashammakhi N, Darabi MA, Pountos I (2019) The dynamic cycle of future personalized and regenerative therapy. J Craniofac Surg 30(3):623–625CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boenink M, Swierstra T, Stemerding D (2010) Anticipating the interaction between technology and morality: a scenario study of experimenting with humans in bionanotechnology. Stud Ethics Law Technol 4:1–38CrossRefGoogle Scholar
  24. 24.
    House of Lords (2000) Science and Society, report of the House of Lords Select Committee on Science and Technology. HMSO, LondonGoogle Scholar
  25. 25.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miura M, Miura Y, Padilla Nash HM, Molinolo AA, Fu B (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li H, Fan X, Kovi RC, Jo Y, Moquin B (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67:10889–10898CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Popov BV, Petrov NS, Mikhaĭlov VM, Tomilin AN, Alekseenko LL, Grinchuk TM, Zaĭchik AM (2009) Spontaneous transformation and immortalization of mesenchymal stem cells in vitro. Tsitologiia 51:91–102PubMedPubMedCentralGoogle Scholar
  30. 30.
    Rubio D, Garcia-Castro J, Martin MC, Fuente R, Cigudosa JC (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3094CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Corselli M, Parodi A, Mogni M, Sessarego N, Kunkl A, Dagna-Bricarelli F, Ibatici A, Pozzi S, Bacigalupo A, Frassoni F, Piaggio G (2008) Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Exp Hematol 36:340–349CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pountos I, Corscadden D, Emery P, Giannoudis PV (2007) Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 38(Suppl 4):S23–S33CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    van der Valk J, Gstraunthaler G (2017) Fetal bovine serum (FBS)—a pain in the dish? Altern Lab Anim 45:329–332CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20:275–281PubMedPubMedCentralGoogle Scholar
  37. 37.
    van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chachques JC, Herreros J, Trainini J, Juffe A, Rendal E, Prosper F, Genovese J (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95(Suppl 1):S29–S33CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Selvaggi TA, Walker RE, Fleisher TA (1997) Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89:776–779CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tuschong L, Soenen SL, Blaese RM, Candotti F, Muul LM (2002) Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther 13:1605–1610CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    WHO. Guidelines on tissue infectivity distribution in transmissible spongiform encephalopathies.
  42. 42.
    Dimasi L (2011) Meeting increased demands on cell-based processes by using defined media supplements. Bioprocess J 9:8Google Scholar
  43. 43.
    Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Adil M, Schaffer DV (2017) Expansion of human pluripotent stem cells. Curr Opin Chem Eng 15:24–35CrossRefGoogle Scholar
  45. 45.
    Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O (2017) A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19(2):155–169CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cimino M, Gonçalves RM, Barrias CC, Martins MCL (2017) Xeno-free strategies for safe human mesenchymal stem/stromal cell expansion: supplements and coatings. Stem Cells Int 2017:6597815CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Burnouf T, Strunk D, Koh MB, Schallmoser K (2016) Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 76:371–387CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koller MR, Maher RJ, Manchel I, Oxender M, Smith AK (1998) Alternatives to animal sera for human bone marrow cell expansion: human serum and serum-free media. J Hematother 7:413–423CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lin HT, Tarng YW, Chen YC, Kao CL, Hsu CJ, Shyr YM, Ku HH, Chiou SH (2005) Using human plasma supplemented medium to cultivate human bone marrow-derived mesenchymal stem cell and evaluation of its multiple-lineage potential. Transplant Proc 37:4504–4505CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S, Hutschenreuter G, Zenke M, Wagner W (2012) Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS One 7(5):e37839CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pountos I, Georgouli T, Henshaw K, Bird H, Giannoudis PV (2013) Release of growth factors and the effect of age, sex, and severity of injury after long bone fracture. A preliminary report. Acta Orthop 84:65–70CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pountos I, Georgouli T, Giannoudis PV (2008) The effect of autologous serum obtained after fracture on the proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Mol Biol (Noisy-le-Grand) 54:33–39Google Scholar
  54. 54.
    Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F (2016) Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 7:93CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Salunkhe V, van der Meer PF, de Korte D, Seghatchian J, Gutiérrez L (2015) Development of blood transfusion product pathogen reduction treatments: a review of methods, current applications and demands. Transfus Apher Sci 52:19–34CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mundt JM, Rouse L, Van den Bossche J, Goodrich RP (2014) Chemical and biological mechanisms of pathogen reduction technologies. Photochem Photobiol 90:957–964PubMedPubMedCentralGoogle Scholar
  57. 57.
    Goodrich RP, Segatchian J (2018) Special considerations for the use of pathogen reduced blood components in pediatric patients: an overview. Transfus Apher Sci 57:374–377CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP (2008) Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev 22:133–153CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ciaravi V, McCullough T, Dayan AD (2001) Pharmacokinetic and toxicology assessment of INTERCEPT (S-59 and UVA treated) platelets. Hum Exp Toxicol 20:533–550CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pountos I, Georgouli T, Henshaw K, Howard B, Giannoudis PV (2014) Mesenchymal stem cell physiology can be affected by antibiotics: an in vitro study. Cell Mol Biol (Noisy-le-Grand) 60:1–7Google Scholar
  61. 61.
    Yamaoka E, Hiyama E, Sotomaru Y, Onitake Y, Fukuba I, Sudo T, Sueda T, Hiyama K (2011) Neoplastic transformation by TERT in FGF-2-expanded human mesenchymal stem cells. Int J Oncol 39:5–11PubMedPubMedCentralGoogle Scholar
  62. 62.
    Pountos I, Panteli M, Georgouli T, Giannoudis PV (2014) Neoplasia following use of BMPs: is there an increased risk? Expert Opin Drug Saf 13:1525–1534CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Barcak EA, Beebe MJ (2017) Bone morphogenetic protein: is there still a role in orthopedic trauma in 2017? Orthop Clin North Am 48:301–309CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gilbert F, O’Connell CD, Mladenovska T, Dodds S (2018) Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics 24:73–91CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gstraunthaler G, Lindl T, van der Valk J (2013) A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 65:791–793CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gstraunthaler G, Lindl T, van der Valk J (2014) A severe case of fraudulent blending of fetal bovine serum strengthens the case for serum-free cell and tissue culture applications. Altern Lab Anim 42:207–209CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Smith DS (2006) The Government’s role in advancing regenerative medicine and tissue engineering–science, safety, and ethics. Periodontology 41:16–29CrossRefGoogle Scholar
  68. 68.
    Heinonen M, Oila O, Nordström K (2005) Current issues in the regulation of human tissue-engineering products in the European Union. Tissue Eng 11:1905–1911CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gheisari Y, Baharvand H, NayerniaK VM (2012) Stem cell and tissue engineering research in the Islamic republic of Iran. Stem Cell Rev Rep 8:629–639CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Neely EL (2016) The risks of revolution: ethical dilemmas in 3D printing from a US perspective. Sci Eng Ethics 22:1285–1297CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ippokratis Pountos
    • 1
    • 2
    Email author
  • Nazzar Tellisi
    • 1
    • 2
  • Nureddin Ashammakhi
    • 3
    • 4
    • 5
    • 6
  1. 1.Academic Department of Trauma and OrthopaedicsLeeds Teaching Hospitals, University of LeedsLeedsUK
  2. 2.Chapel Allerton HospitalLeeds Teaching HospitalsLeedsUK
  3. 3.Center for Minimally Invasive Therapeutics (C-MIT)University of California Los AngelesLos AngelesUSA
  4. 4.California NanoSystems Institute (CNSI)University of California Los AngelesLos AngelesUSA
  5. 5.Department of Radiological Sciences, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  6. 6.Biotechnology Research CenterLibyan Authority for Research, Science and TechnologyTripoliLibya

Personalised recommendations