Advertisement

A Gaussian Mixture Model Approach to Classifying Response Types

  • Owen E. ParsonsEmail author
Chapter
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)

Abstract

Visual perception is influenced by prior experiences and learned expectations. One example of this is the ability to rapidly resume visual search after an interruption to the stimuli. The occurrence of this phenomenon within an interrupted search task has been referred to as rapid resumption. Previous attempts to quantify individual differences in the extent to which rapid resumption occurs across participants relied on using an operationally defined cutoff criteria to classify response types within the task. This approach is potentially limited in its accuracy and could be improved by turning to data-driven alternatives for classifying response types. In this chapter, I present an alternative approach to classifying participant responses on the interrupted search task by fitting a Gaussian mixture model to response distributions. The parameter estimates obtained from fitting this model can then be used in a naïve Bayesian classifier to allow for probabilistic classification of individual responses. The theoretical basis and practical application of this approach are covered, detailing the use of the Expectation-Maximisation algorithm to estimate the parameters of the Gaussian mixture model as well as applying a naïve classifier to data and interpreting the results.

Keywords

Visual search Interrupted search Rapid resumption Prior expectations Attention Gaussian mixture models Expectation-maximisation 

References

  1. 1.
    Bar, M.: Visual objects in context. Nat. Rev. Neurol. 5(8), 617 (2004)CrossRefGoogle Scholar
  2. 2.
    von Helmholtz, H.: Concerning the perceptions in general. In: Treatise on Physiological Optics (1866)Google Scholar
  3. 3.
    Seriès, P., Seitz, A.: Learning what to expect (in visual perception). Front. Hum. Neurosci. 7, 668 (2013)CrossRefGoogle Scholar
  4. 4.
    Lleras, A., Rensink, R.A., Enns, J.T.: Rapid resumption of interrupted visual search: New insights on the interaction between vision and memory. Psychol. Sci. 16(9), 684–688 (2005)CrossRefGoogle Scholar
  5. 5.
    Chun, M.M.: Contextual cueing of visual attention. Trends Cogn. Sci. 4(5), 170–178 (2000)CrossRefGoogle Scholar
  6. 6.
    Kunar, M.A., Flusberg, S.J., Horowitz, T.S., Wolfe, J.M.: Does contextual cueing guide the deployment of attention? J. Exp. Psychol. Hum. Percept. Perform. 33(4), 816–828 (2007)CrossRefGoogle Scholar
  7. 7.
    Makovski, T.: What is the context of contextual cueing? Psychon. Bull. Rev. 23(6), 1982–1988 (2016)CrossRefGoogle Scholar
  8. 8.
    Spaak, E., Fonken, Y., Jensen, O., de Lange, F.P.: The neural mechanisms of prediction in visual search. Cereb. Cortex (New York, NY: 1991) 26(11), 4327–4336 (2016)Google Scholar
  9. 9.
    Vaskevich, A., Luria, R.: Adding statistical regularity results in a global slowdown in visual search. Cognition 174, 19–27 (2018)CrossRefGoogle Scholar
  10. 10.
    Lleras, A., Porporino, M., Burack, J.A., Enns, J.T.: Enns. Rapid resumption of interrupted search is independent of age-related improvements in visual search. J. Exp. Child Psychol. 109(1), 58–72 (2011)CrossRefGoogle Scholar
  11. 11.
    Lleras, A., Rensink, R.A., Enns, J.T.: Consequences of display changes during interrupted visual search: Rapid resumption is target specific. Percept. Psychophys. 69(6), 980–993 (2007)CrossRefGoogle Scholar
  12. 12.
    Posner, M.I.: Orienting of attention. Q. J. Exp. Psychol. 32(1), 3–25 (1980)CrossRefGoogle Scholar
  13. 13.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Berlin (2006)zbMATHGoogle Scholar
  14. 14.
    McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite mixture models. Ann. Rev. Stat. Appl. 6(1), 355–378 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism. Am. Stat. 52(2), 181–184 (1998)Google Scholar
  17. 17.
    Wechsler, D.: Wechsler Adult Intelligence Scale (WAIS–IV), vol. 22, 4th edn, p. 498. NCS Pearson, San Antonio (2008)Google Scholar
  18. 18.
    Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10(4), 433–436 (1997)CrossRefGoogle Scholar
  19. 19.
    Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C.: What’s new in psychtoolbox-3. Perception 36(14), 1 (2007)Google Scholar
  20. 20.
    MATLAB User’s Guide MathWorks. MathWorks, South Natick (1989)Google Scholar
  21. 21.
    Rensink, R.A.: Visual search for change: A probe into the nature of attentional processing. Vis. Cogn. 7(1–3), 345–376 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUK

Personalised recommendations