Short Term Transversally Isotropic Creep of Plates Under Static and Periodic Loading

  • Holm Altenbach
  • Dmitry BreslavskyEmail author
  • Volodymyr Mietielov
  • Oksana Tatarinova
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 117)


The statement and solution method of the two-dimensional problem of orthotropic creep under static and periodic loadings are presented. Experimental investigations of short-term deformation under uni-axial and plane stress states are carried out. Short-term creep curves were obtained for uni-axial specimens and plates with holes. Constitutive equations are developed for steel characterized by the first stage of unsteady creep with orthotropic properties under static and periodic loading. The calculation method in general was verified by comparing numerical and experimental results under the uni-axial and plane stress states.


Short-term creep Orthotropic properties Plane stress state FEM Experimental investigations 


  1. 1.
    Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  2. 2.
    Rabotnov, YuN, Mileyko, S.T.: Short-term Creep. Nauka, Moscow (1970). (in Russ.)Google Scholar
  3. 3.
    Rabotnov, YuN: Creep Problems in Structural Members. North-Holland, Amsterdam (1969)zbMATHGoogle Scholar
  4. 4.
    Malinin, N.N.: Applied Theory of Plasticity and Creep. Mashinostroenie, Moscow (1975). (in Russ.)Google Scholar
  5. 5.
    Hoff, N.J.: Structures and materials for finite lifetime. Adv. Aeronaut. Sci.: Proc. First Int. Congr. Aeronaut. Sci. 2, 928–961 (1959)CrossRefGoogle Scholar
  6. 6.
    Kassner, M.E.: Fundamentals of Creep in Metals and Alloys. Elsevier Science Technology, London (2015)Google Scholar
  7. 7.
    Nikitenko, A.F., Sosnin, O.V.: Creep and long-term strength under cyclic loading conditions. Strength Mater. 8, 1395–1398 (1976)CrossRefGoogle Scholar
  8. 8.
    Stryzhalo, V.O.: On the applicability of creep theories and methods of estimating durability for case of stepped directed deformation of material in a low-cycle region. Proc. Acad. Sc Ukr. 3, 14–24 (1978). (in Ukrain.)Google Scholar
  9. 9.
    Lebedev, A.A., Giginyak, F.F., Bashta, V.V.: Cyclic creep of body steels under a complex stress system in the temperatures range 20–400  C. Strength Mater. 10(10), 1128–1131 (1978)CrossRefGoogle Scholar
  10. 10.
    Kennedy, A.J.: Processes of Creep And Fatigue in Metals. Wiley, London (1963)Google Scholar
  11. 11.
    Tsimbalistyi, Ya.I., Troyan, I.A., Marusii, O.I.: Investigation of the vibrocreep of alloy EI437B at normal and high temperatures. Strength Mater. 7, 1331–1335 (1975)Google Scholar
  12. 12.
    Weinbel, R.C., Schwarzkopf, E.A., Tien, J.K.: Effects of frequency on the cyclic creep and fracture of a lead-rich-lead-tin solder alloy. Scr. Metall. 21, 1165–1168 (1987)CrossRefGoogle Scholar
  13. 13.
    Fakpana, K., Otsukab, Y., Mutohb, Y., Inouec, S., Nagatad, K., Kodani, K.: Creep-fatigue crack growth behavior of Pb-contained and Pb-free solders at room and elevated temperatures. Procedia Eng. 10, 1238–1243 (2011)CrossRefGoogle Scholar
  14. 14.
    Wagoner, R.H., Chenot, J.L.: Metal Forming Analysis. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  15. 15.
    Saanouni, K., Chaboche, J.-L.: Computational damage mechanics: application to metal forming simulation. Compr. Struct. Integr. 3, 321–376 (2003)CrossRefGoogle Scholar
  16. 16.
    Saanouni, K.: Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation. Wiley, London (2012)CrossRefGoogle Scholar
  17. 17.
    Breslavskii, D.V., Morachkovskii, O.K.: Nonlinear creep and the collapse of flat bodies. Int. Appl. Mech. 34(3), 287–292 (1998)Google Scholar
  18. 18.
    Breslavsky, D., Morachkovsky, O., Tatarinova, O.: Creep and damage in shells of revolution under cyclic loading and heating. Int. J. Nonlinear Mech. 66, 87–95 (2014)CrossRefGoogle Scholar
  19. 19.
    Breslavskii, D.V., Metelev, V.A., Morachkovskii, O.K.: Anisotropic creep and damage in structural elements under cyclic loading. Strength Mater. 47(2), 235–241 (2015)CrossRefGoogle Scholar
  20. 20.
    Hamming, R.W.: Numerical Methods for Scients and Engineers. McGraw-Hill, New York (1973)zbMATHGoogle Scholar
  21. 21.
    Moiseev, N.N.: Asymptotic Methods of Nonlinear Mechanics. Nauka, Moscow (1969). (in Russ.)zbMATHGoogle Scholar
  22. 22.
    Breslavsky, D.V., Konkin, V.M., Mietielov, V.O.: Plasticity and creep of steel 3 at room temperature. Bull. NTU “KhPI”. Ser.: Dyn. Strength Mach. 46(1218), 77–81 (2016)Google Scholar
  23. 23.
    Chaboche, J.-L.: A review of some plasticity and viscoplasticity constitutive equations. Int. J. Plast. 24, 1642–1693 (2008)CrossRefGoogle Scholar
  24. 24.
    Breslavsky, D.V., Korytko, Yu. N., Tatarinova, O.A.: Design and Development of Finite Element Method Software. Kharkiv: Pidruchnyk NTU « KhPI » . (in Ukrain.) (2017)Google Scholar
  25. 25.
    Zienkiewicz, O.C., Taylor, R.L., Wood, D.D.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann (2014)Google Scholar
  26. 26.
    Bathe, K.J.: Finite-Elemente Methoden. Springer, Berlin (1990)Google Scholar
  27. 27.
    Walczak, J., Sieniawski, J., Bathe, K.: On the analysis of creep stability and rupture. Comput. Struct. 17(5–6), 783–792 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Dmitry Breslavsky
    • 2
    Email author
  • Volodymyr Mietielov
    • 2
  • Oksana Tatarinova
    • 2
  1. 1.Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Department of Computer Modeling of Processes and SystemsNational Technical University ‘Kharkiv Polytechnic Institute’KharkivUkraine

Personalised recommendations