Recent Advancements in Mycodegradation of Lignocellulosic Biomass for Bioethanol Production

  • Divya Kumari
  • Barkha SinghalEmail author
Part of the Fungal Biology book series (FUNGBIO)


The past decade has witnessed the prolific growth in bioethanol production from various lignocellulosic biomasses. The dynamic utilization of bioethanol in transportation, electricity, heat and power generation leads to fascination towards continuing research for the improvement in bioethanol productivity. The rigorous four processing steps including pretreatment, saccharification, enzymatic hydrolysis, fermentation confer the process technology more costly for their sustainable utilization. Therefore, comprehensive research efforts have been undertaken for utilizing various fungi for integrating the difficult processing steps in a single fermentation vessel for improving the productivity of bioethanol. The advent of “omic” and synthetic biology approaches revolutionize the bioethanol production by engineering various conventional and non-conventional yeast systems as well as other groups of fungi. Therefore, this chapter emphasized the role of mycodegradation of lignocellulosic biomass and their conversion into bioethanol. The current molecular implications for engineering various fungi for enhanced productivity of bioethanol in terms of stress tolerance, ethanol tolerance, and wider substrate utilization has been reviewed and simultaneously posits various technological hurdles and future research priorities in the production of second-generation bioethanol.


Bioenergy Bioethanol Consolidated bioprocessing Distillation Fermentation Enzymatic hydrolysis Lignocellulosic biomass Mycodegradation 





Consolidated bioprocessing


Co-solvent enhanced lignocellulosic fermentation


Co-solvent-based lignocellulosic fractionation


Clustered regularly interspaced short palindromic repeats


Direct microbial conversion


Extractive ammonia


Genome-scale metabolic models


Gamma valerolactone


Lytic polysaccharide monooxygenases


Municipal solid waste


Methyl tertiary butyl ether


Nicotinamide adenine dinucleotide (NAD) + hydrogen (H)


Promoter-based gene assembly and simultaneous overexpression


Separate hydrolysis and fermentation


Sulfite pretreatment to overcome recalcitrance of lignocellulose


Simultaneous saccharification and co-fermentation


Simultaneous saccharification and fermentation


Translational elongation factor


United States of America



The authors are extremely grateful for Gautam Buddha University for providing all necessary facilities and support for writing this chapter. All authors declare that they have no conflict of interest.


  1. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover (No. NREL/TP-510-32438). National renewable energy lab golden co.Google Scholar
  2. Al-Hasan M (2003) Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Convers Manag 44(9):1547–1561CrossRefGoogle Scholar
  3. Almeida JR, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF (2008) NADH-vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78(6):939–945CrossRefPubMedGoogle Scholar
  4. Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefPubMedGoogle Scholar
  5. Alzate CC, Toro OS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31(13):2447–2459CrossRefGoogle Scholar
  6. Amin FR, Khalid H, Zhang H, u Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7(1):72CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson JE, DiCicco DM, Ginder JM, Kramer U, Leone TG, Raney-Pablo HE, Wallington TJ (2012) High octane number ethanol–gasoline blends: quantifying the potential benefits in the United States. Fuel 97:585–594CrossRefGoogle Scholar
  8. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Dominska M (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270Google Scholar
  9. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198CrossRefPubMedGoogle Scholar
  10. Arora R, Behera S, Sharma NK, Kumar S (2015) A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol 6:889PubMedPubMedCentralGoogle Scholar
  11. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61Google Scholar
  12. Baba Y, Tanabe T, Shirai N, Watanabe T, Honda Y, Watanabe T (2011) Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass Bioenergy 35(1):320–324CrossRefGoogle Scholar
  13. Bakshi AS, Loescher ME, Sahay N (2007) U.S. Patent No. 7,273,957. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  14. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875CrossRefGoogle Scholar
  15. Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I (2002) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microbiol Biotechnol 18(6):559–561CrossRefGoogle Scholar
  16. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848Google Scholar
  17. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3(1):82–92CrossRefGoogle Scholar
  18. Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM (1999) An endoglucanase, EglA, from the hyperthermophilic Archaeon Pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1→3),(1→4)-β-D-glucans and cellulose. J Bacteriol 181(1):284–290Google Scholar
  19. Bhardwaj N, Kumar B, Agarwal K, Chaturvedi V, Verma P (2019) Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. Int J Biol Macromol 122:1191–1202Google Scholar
  20. Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol Lett 9(5):609–620Google Scholar
  21. Boykoff M, Daly M, McAllister L, McNatt M, Nacu-Schmidt A, Oonk D, Pearman O (2019) Life as we know it: a review of the month’s media coverage of climate change and global warming. Media and Climate Change Observatory, Center for Science and Technology Policy Research, Cooperative Institute for Research in Environmental Sciences, 29.
  22. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chem 13(9):2489–2499CrossRefGoogle Scholar
  23. Buxton DR, Russell JR (1988) Lignin constituents and cell-wall digestibility of grass and legume stems. Crop Sci 28(3):553–558CrossRefGoogle Scholar
  24. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36(12):3541–3549Google Scholar
  25. Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sust Energ Rev 26:307–321CrossRefGoogle Scholar
  26. Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96(2):219–231CrossRefPubMedGoogle Scholar
  27. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910CrossRefPubMedGoogle Scholar
  28. De Frias JA, Feng H (2013) Switchable butadiene sulfone pretreatment of Miscanthus in the presence of water. Green Chem 15(4):1067–1078CrossRefGoogle Scholar
  29. De Souza Liberal AT, Basílio ACM, do Monte Resende A, Brasileiro BTV, Da Silva-Filho EA, De Morais JOF, de Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102(2):538–547Google Scholar
  30. Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116CrossRefGoogle Scholar
  31. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716CrossRefGoogle Scholar
  32. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefPubMedGoogle Scholar
  33. Dodo CM, Mamphweli S, Okoh O (2017) Bioethanol production from lignocellulosic sugarcane leaves and tops. J Energy South Afr 28(3):1–11CrossRefGoogle Scholar
  34. Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzym Microb Technol 43(2):120–123Google Scholar
  35. Evcan E (2012) Bioethanol production from fungal sources using low-cost agro-industrial waste products. Master’s thesis, İzmir Institute of TechnologyGoogle Scholar
  36. Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19(1):1–13CrossRefGoogle Scholar
  37. Gamage J, Lam H, Zhang Z (2010) Bioethanol production from lignocellulosic biomass: a review. J Biobased Mater Bioenergy 4(1):3–11CrossRefGoogle Scholar
  38. García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Microbiol Biotechnol 137(1–12):353–365Google Scholar
  39. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10(2):141–146CrossRefPubMedGoogle Scholar
  40. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16(1):1–16CrossRefGoogle Scholar
  41. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556CrossRefPubMedGoogle Scholar
  42. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28(4):384–410CrossRefGoogle Scholar
  43. Harmsen PFH, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass (No. 1184). UR-Food & Biobased Research, WageningenGoogle Scholar
  44. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47(9):1287–1294CrossRefGoogle Scholar
  45. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18CrossRefPubMedGoogle Scholar
  46. Hsu TA (2018) Pretreatment of biomass. In: Handbook on bioethanol. Routledge, pp 179–212Google Scholar
  47. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Sexton D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover (No. NREL/TP-5100-47764). National Renewable Energy Lab. (NREL), Golden, CO (United States)Google Scholar
  48. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRefPubMedGoogle Scholar
  49. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:298153Google Scholar
  50. Kim H, Lee WH, Galazka JM, Cate JH, Jin YS (2014) Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl Microbiol Biotechnol 98(3):1087–1094Google Scholar
  51. Konda NVSNM, Shi J, Singh S, Blanch HW, Simmons BA, Marcuschame DK (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86–99CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391CrossRefPubMedGoogle Scholar
  54. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  55. Kutas G, Lindberg C, Steenblik R (2007) Biofuels—at what cost?: government support for ethanol and biodiesel in the European Union. International Institute for Sustainable Development, Geneva, pp 14–25Google Scholar
  56. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24CrossRefPubMedGoogle Scholar
  57. Li X (2010) Bioethanol production from lignocellulosic feedstock using aqueous ammonia pretreatment and simultaneous saccharification and fermentation (SSF): process development and optimization, Graduate theses and dissertations, 11300Google Scholar
  58. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  59. Liu Q, Li J, Gao R, Li J, Ma G, Tian C (2019) CLR-4, a novel conserved transcription factor for cellulase gene expression in ascomycete fungi. Mol Microbiol 111(2):373–394Google Scholar
  60. Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583CrossRefPubMedGoogle Scholar
  61. Madhavan A, Jose AA, Binod P, Sindhu R, Sukumaran RK, Pandey A, Castro GE (2017) Synthetic biology and metabolic engineering approaches and its impact on non-conventional yeast and biofuel production. Front Energy Res 5:8CrossRefGoogle Scholar
  62. Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31(15):3362–3380CrossRefGoogle Scholar
  63. Menegol D, Scholl AL, Dillon AJP, Camassola M (2017) Use of elephant grass (Pennisetum purpureum) as substrate for cellulase and xylanase production in solid-state cultivation by Penicillium echinulatum. Braz J Chem Eng 34(3):691–700Google Scholar
  64. Meng QS, Liu CG, Zhao XQ, Bai FW (2018) Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J Biotechnol 285:56–63Google Scholar
  65. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar
  66. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245CrossRefPubMedGoogle Scholar
  67. Moreno AD, Alvira P, Ibarra D, Tomás-Pejó E (2017) Production of ethanol from lignocellulosic biomass. In: Production of platform chemicals from sustainable resources. Springer, Singapore, pp 375–410CrossRefGoogle Scholar
  68. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefPubMedGoogle Scholar
  69. Nagdeote DD, Deshmukh MM (2012) Experimental study of diethyl ether and ethanol additives with biodiesel-diesel blended fuel engine. Int J Emerg Technol Adv Eng 2(3):2250–2459Google Scholar
  70. Nasir M, Ghazi MT (2015) Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Eng Life Sci 15(7):733–742CrossRefGoogle Scholar
  71. Nasir Iqbal HM, Kamal S (2012) Economical bioconversion of lignocellulosic materials to value-added products. J Biotechnol Biomater 2:e112CrossRefGoogle Scholar
  72. Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE (2016) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem 18(6):1581–1589CrossRefGoogle Scholar
  73. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87(1):17–27Google Scholar
  74. Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6(1):110–122CrossRefPubMedGoogle Scholar
  75. Opoku A (2019) Biodiversity and the built environment: implications for the sustainable development goals (SDGs). Resour Conserv Recycling 141:1–7CrossRefGoogle Scholar
  76. Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, da Costa Sousa L, Dale BE, Singh S, Simmons BA (2016) Evaluation of agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223CrossRefPubMedGoogle Scholar
  77. Ponniah SK, Shang Z, Akbudak MA, Srivastava V, Manoharan M (2017) Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase, cinnamoyl CoA reductase, and cinnamyl alcohol dehydrogenase leads to lignin reduction in rice (Oryza sativa L. ssp. japonica cv. Nipponbare). Plant Biotechnol Rep 11(1):17–27CrossRefGoogle Scholar
  78. Puttaswamy CT, Sagar BR, Simha U, Manjappa S, Kumar CV (2016) Production of bioethanol from lignocellulosic biomass. Indian J Adv Chem Sci 239:244Google Scholar
  79. Rastogi M, Shrivastava S (2018) Current methodologies and advances in bio-ethanol production. J Biotechnol Biores 1(1):1–8Google Scholar
  80. Rezania S, Din MFM, Mohamad SE, Sohaili J, Taib SM, Yusof MBM, Ahsan A (2017) Review on pretreatment methods and ethanol production from cellulosic water hyacinth. BioResources 12(1):2108–2124Google Scholar
  81. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174CrossRefPubMedPubMedCentralGoogle Scholar
  82. Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4(1):31Google Scholar
  83. Rocha-Meneses L, Raud M, Orupõld K, Kikas T (2017) Second-generation bioethanol production: a review of strategies for waste valorisation. Agron Res 15(3):830–847Google Scholar
  84. Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198CrossRefGoogle Scholar
  85. Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4(2):157–164Google Scholar
  86. Salusjärvi L, Poutanen M, Pitkänen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Penttilä M (2003) Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast 20(4):295–314CrossRefPubMedGoogle Scholar
  87. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefPubMedGoogle Scholar
  88. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27CrossRefGoogle Scholar
  89. Sathitsuksanoh N, Zhu Z, Ho TJ, Bai MD, Zhang YHP (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101(13):4926–4929CrossRefPubMedGoogle Scholar
  90. Scarlat N, Dallemand JF (2019) Future role of bioenergy. The role of bioenergy in the bioeconomy. Academic, pp 435–547Google Scholar
  91. Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23(1):63CrossRefPubMedGoogle Scholar
  92. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS 105(37):13769–13774CrossRefPubMedGoogle Scholar
  93. Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chem 18(4):937–943CrossRefGoogle Scholar
  94. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82CrossRefPubMedGoogle Scholar
  95. Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101(13):5003–5012CrossRefPubMedGoogle Scholar
  96. Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRefGoogle Scholar
  97. Singh S, Simmons BA (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2(62):1–9Google Scholar
  98. Singh S, Simmons BA, Vogel KP, (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switch grass. Biotech Bioeng 104(1):68–75Google Scholar
  99. Soccol CR, de Souza Vandenberghe LP, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, da Silva Bon EP (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101(13):4820–4825CrossRefPubMedGoogle Scholar
  100. Souto-Maior AM, Runquist D, Hahn-Hägerdal B (2009) Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 143(2):119–123CrossRefPubMedGoogle Scholar
  101. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433CrossRefPubMedGoogle Scholar
  102. Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem 47(48):9200–9211CrossRefGoogle Scholar
  103. Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424CrossRefGoogle Scholar
  104. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefPubMedGoogle Scholar
  105. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRefPubMedGoogle Scholar
  106. Tsigie YA, Wu CH, Huynh LH, Ismadji S, Ju YH (2013) Bioethanol production from Yarrowia lipolytica Po1g biomass. Bioresour Technol 145:210–216Google Scholar
  107. Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS Lett 204(2):223–227CrossRefGoogle Scholar
  108. Viñals-Verde M, Bell-García A, Michelena-Álvarez G, Ramil-Mesa M (2012) Ethanol production from lignocellulosic biomass. ICIDCA Sobre los Derivados de la Caña de Azúcar. 46(1):7–16Google Scholar
  109. Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242CrossRefPubMedGoogle Scholar
  110. Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429CrossRefPubMedGoogle Scholar
  111. Wu Z, Li Y, Xu D, Meng H (2019) Co-pyrolysis of lignocellulosic biomass with low-quality coal: optimal design and synergistic effect from gaseous products distribution. Fuel 236:43–54CrossRefGoogle Scholar
  112. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50(1):3–15CrossRefGoogle Scholar
  113. Wyman CE (2018) Ethanol production from lignocellulosic biomass: overview. In: Handbook on bioethanol. Routledge, pp 1–18Google Scholar
  114. Xiong S, Martín C, Eilertsen L, Wei M, Myronycheva O, Larsson SH et al (2019) Energy-efficient substrate pasteurisation for combined production of shiitake mushroom (Lentinula edodes) and bioethanol. Bioresour Technol 274:65–72Google Scholar
  115. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371CrossRefPubMedGoogle Scholar
  116. Xu H, Che X, Ding Y, Kong Y, Li B, Tian W (2019) Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresour Technol 279:271–280CrossRefPubMedGoogle Scholar
  117. Zabed H, Sahu J, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501. Scholar
  118. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482CrossRefGoogle Scholar
  119. Zhao C, Chen S, Fang H (2018) Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa. Appl Microbiol Biotechnol 102(22):9577–9584Google Scholar
  120. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68Google Scholar
  121. Zheng Z, Jiang T, Zou L, Ouyang S, Zhou J, Lin X, Ouyang J (2018) Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnol Biofuels 11(1):320Google Scholar
  122. Zhu JY, Zhu W, OBryan P, Dien BS, Tian S, Gleisner R, Pan XJ (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86(5):1355–1365CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biotechnology, Gautam Buddha UniversityGreater NoidaIndia

Personalised recommendations