Advertisement

Rapid Bioconversion of Lignocellulosic Biomass by Fungi

  • Adesh Kumar
  • Divya Srivastva
  • Ramesh Chand
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Fungal degradation of lignocellulosic materials brings a variety of changes in their bio-physico-chemical properties. Lower digestibility of various agricultural residues can be enhanced by fungal treatment. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocelluloses containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with lignolytic enzymes is responsible for lignin modification and degradation. It can improve the nutritional quality of lignocellulosic residues by degrading lignin and converting complex polysaccharides into simple sugars. Changes in physical qualities of lignocellulosic biomass that are texture, color, and aroma have been an interesting area of study along with chemical properties. Degradation of lignocellulose not only upgrades the quality of degraded biomass, but helps simultaneous production of different commercial enzymes and other by-products of interest.

Keywords

Fungi Bioconversion Lignocellulosic biomass Solid state fermentation 

References

  1. Abdel-Azeem HHM (2001) Some factors affecting the composting process of rice straw. Ann Agricul Sci Cairo 46(2):525–542Google Scholar
  2. Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46CrossRefGoogle Scholar
  3. Alexander M (1977) Introduction to soil microbiology. Wiley-Eastern Ltd, New Delhi, pp 163–173Google Scholar
  4. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):1–11CrossRefGoogle Scholar
  5. Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arantes V, Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials. American Chemical Society, Mississippi, pp 4–21Google Scholar
  7. Asim N, Emdadi Z, Mohammad M, Yarmo MA, Sopian K (2015) Agricultural solid waste for green desiccant applications: an overview of research achievement, opportunities and perspectives. J Clean Prod 91:26–35CrossRefGoogle Scholar
  8. Baca MT, Esteban E, Almendros G, Sanchez-Raya AJ (1993) Changes in the gas phase of compost during solid state fermentation of sugarcane bagasse. Bioresour Technol 44:5–8CrossRefGoogle Scholar
  9. Bakalova N, Petrova S, Atev A, Bhat M, Kolev D (2002) Biochemical and catalytic propoerties of endo-1, 4 xylanase from Thermomyces lanuginosus (wild and mutant strains). Biotechnol Lett 24:1167–1172CrossRefGoogle Scholar
  10. Batt CA (1991) Biomass. In: Mosses U, Cape RE (eds) Biotechnology, the science and the business. Harvard Academic Press, New York, pp S21–S36Google Scholar
  11. Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 22(2):231–238CrossRefPubMedGoogle Scholar
  12. Beg S, Zafar SI, Saha FH (1986) Rice husk biodegradation by Pleurotus ostreatus to produce a ruminant feed. Agric Wastes 17:15–21CrossRefGoogle Scholar
  13. Berrin JG, Navarro D, Couturier M, Olive C, Grisel S, Haon M, LesageMeessen L (2012) Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 78(18):6483–6490CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bhat KM, Smith DC, Wood TM, Grassi G. (ed), Delmon B (ed) Molle JF (ed), Zibetta H (1987) Screening of mesophilic and thermophilic fungi for extracellular xylanase and beta xylosidase activity. Biomass for energy and industry. In: 4th EC conference. Proceeding of the international conference, Orleans, 11–15 May 1987, pp 778–782Google Scholar
  15. Bhardwaj KKR, Gaur AC (1985) Recycling of organic waste. All India coordinated research project on microbiological decomposition and reycling of farm and city wastes, pp 1–104Google Scholar
  16. Bhumibhamon O, Chaiyapol K, Sirisansanee-Yakul S (1988) Studies on chemical and environmental changes during composting. Recent advances in biotechnology and applied biology. In: Proceedings of English international conference on global impacts of applied microbiology and international conference on applied biology and biotechnology, Hong Kong, 1–5 Aug 1988, pp 587–594Google Scholar
  17. Bilay VT, Elliott TJ (1995) Interaction of thermophilic fungi from mushroom compost in different agar media and temperatures Mushroom Science xiv, volume 1. In: Proceedings of the 14th international congress on the science and cultivation of edible fungi, Oxford, 17–22 Sept 1995, pp 251–255Google Scholar
  18. Bischof RJ, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15(1):106CrossRefPubMedPubMedCentralGoogle Scholar
  19. Biswas SR, Janar SC, Mishra AK, Nanda G (1990) Production, purification and characterization of xylanase from a hyperxylanolytic mutant of Aspergillus ochraceus. Biotechnol Bioeng 35:244–251CrossRefPubMedGoogle Scholar
  20. Bonugli-Santos RC, Durrant LR, Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46:32–37CrossRefGoogle Scholar
  21. Breccia JS, Bettucci L, Piaggio M, Sinergi F (1997) Degradation of cane bagasse by several white rot fungi. Acta Biotechnol 17(2):177–184CrossRefGoogle Scholar
  22. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516CrossRefPubMedGoogle Scholar
  23. Bugg TD, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17CrossRefPubMedGoogle Scholar
  24. Carrasco T, Valino E, Medina I, Ravelo D (1999) Design and evaluation of a bioreactor for solid state fermentation. Cuba J Agric Sci 33(4):409–414Google Scholar
  25. Castellanos OF, Sinitsyn AP, Vlasenko EY (1995) Evaluation of hydrolysis constitution of cellulosic materials by Penicillium cellulase. Bioresour Technol 52:109–117CrossRefGoogle Scholar
  26. Chahal DS (1985) Solid state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49:205–210PubMedPubMedCentralGoogle Scholar
  27. Chaplin M (2016) Water structure and science. http://www1.lsbu.ac.uk/water/cellulose.htm
  28. Chen (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Springer Netherlands, Dordrecht, pp 25–71CrossRefGoogle Scholar
  29. Christensen CM, Kaufman HH (1974) Microflora. In: Christensen M (ed) Storage of cereal grains and their products. American Association of Cereal Chemists, Eagan, pp 158–192Google Scholar
  30. Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRefPubMedGoogle Scholar
  31. Conrad D (1981) Enzymatic hydrolysis of xylans 1A high xylanase and xylosidase producing strain of Aspergillus niger. Biotechnol Lett 3:345–350CrossRefGoogle Scholar
  32. Cosgrove (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326CrossRefGoogle Scholar
  33. Cosgrove LLC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43(12):1436–1444CrossRefPubMedGoogle Scholar
  34. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861CrossRefPubMedGoogle Scholar
  35. Courtade G, Wimmer R, Rohr AK, Preims M, Felice AK, Dimarogona M, Aachmann FL (2016) Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci U S A 113(21):5922–5927CrossRefPubMedPubMedCentralGoogle Scholar
  36. Couturier M, Berrin JG (2013) The saccharification step: the main enzymatic components. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, HeidelbergGoogle Scholar
  37. Couturier M, Bennati-Granier C, Urio MB, Ramos LP, Berrin JG (2016) Fungal enzymatic degradation of cellulose. In: Green fuels technology, pp 133–146CrossRefGoogle Scholar
  38. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119CrossRefPubMedGoogle Scholar
  39. Crawford JH (1983) Composting of agriculture waste—a review. Process Biochem 18:14–18Google Scholar
  40. Currie JA, Festenstein GN (1971) Factors defining spontaneous heating and ignition of hay. J Sci Food Agric 22:223–320CrossRefGoogle Scholar
  41. Damaso MCT, Andrade CMMC, Pereira-Junior N, Finkelstein M, Davision BH (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84–86:821–834CrossRefPubMedGoogle Scholar
  42. De Lima DR, Silveira MHL, Del Rio L, Ramos LP (2016) Pre-treatment processes for cellulosic ethanol production: processes integration and modeling for the utilization of lignocellulosics such as sugarcane straw. In: Soccol RC, Brar KS, Faulds C, Ramos PL (eds) Green fuels technology: biofuels. Springer International Publishing, Cham, pp 107–131CrossRefGoogle Scholar
  43. Dekker RFH (1983) Bioconversion of hemicellulose: aspects of hemicellulose production by Trichoderma reesei. M. 9414 and enzymatic saccharification of hemicellulose. Biotechnol Bioeng 30:1127–1146CrossRefGoogle Scholar
  44. Deploey JJ, Fergus CL (1975) Growth and sporulation of thermophilic fungi and actinomycetes in 0 N atmospheres. Mycologia 67:780–797CrossRefPubMedGoogle Scholar
  45. Dhillon A, Khanna S (2000) Production of a thermostable alkali-tolerant xylanase from Bacillus circulans AV16 grown on wheat straw. World J Microbiol Biotechnol 16:325–327CrossRefGoogle Scholar
  46. Dighe AS, Khandeparkar VG, Berabet SM (1988) Production of single cell protein from enzymatic cellulosic hydrolysates. Indian J Microbiol 28:128–130Google Scholar
  47. Din N, Damude HG, Gilkes NR, Miller RC, Warren RA, Kilburn DG (1994) C1-Cx revisited: intra molecular synergism in a cellulase. Proc Natl Acad Sci 91(24):11383–11387CrossRefPubMedGoogle Scholar
  48. Ding SY, Liu YS (2012) Imaging cellulose using atomic force microscopy. Methods Mol Biol 908:23–30CrossRefPubMedGoogle Scholar
  49. Dixon RA (2013) Microbiology: break down the walls. Nature 493(7430):36–37CrossRefPubMedGoogle Scholar
  50. Doi RH (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125:267–279CrossRefPubMedGoogle Scholar
  51. Durand A, Broise D, Blachere H, Broise D (1988) Laboratory scale bioreactor for solid state process. J Biotechnol 8(1):59–66CrossRefGoogle Scholar
  52. Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938CrossRefPubMedPubMedCentralGoogle Scholar
  53. Espino-Rammer L, Ribitsch D, Przylucka A, Marold A, Greimel KJ, Herrero Acero E, Druzhinina IS (2013) Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 79(14):4230–4238CrossRefPubMedPubMedCentralGoogle Scholar
  54. Falade AO, Nwodo UU, Iweriebor BC, Green E (2017) Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6:e00394CrossRefGoogle Scholar
  55. Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ (2017) Boosting LPMO driven lignocellulose degradation by polyphenol oxidase activated lignin building blocks. Biotechnol Biofuels 10:121CrossRefPubMedPubMedCentralGoogle Scholar
  56. Frost GM, Moss DA (1987) Production of enzymes by fermentation. In: Rehn HJ, Reed G (eds) Biotechnology, vol 79. VCH. Pub., FRG, pp 65–221Google Scholar
  57. Gandarias I, Luis P (2013) Hydrotreating catalytic processes for oxygen removal in the upgrading of bio-oils and bio-chemicals.  https://doi.org/10.5772/52581
  58. Garg SK, Neelakanthan S (1982) Effects of nutritional factors on cellulase enzyme and microbial protein production by Aspergillus terreus and its evaluation. Biotechnol Bioeng 24:109–125CrossRefPubMedGoogle Scholar
  59. Gaur AC, Sadasivam KV, Mathur RS, Magu SP (1982) Role of mesophilic fungi in composting. Agric Wastes 4:453–460CrossRefGoogle Scholar
  60. George SP, Ahmad A, Rao MB (2001) A novel thermostable xylanase from Thermomonospora sp. influence of conditions on thermostability. Bioresour Technol 78:221–224CrossRefPubMedGoogle Scholar
  61. Gerrits JPG, Amsing JGM, Straatsma G, Griensven LJLD, Elliott TJ (1995) Phase I process in tunnels for the production of Agaricus bisporus compost with special reference to the importance of water. Mushroom science and cultivation of edible fungi, Oxford, 17–22 Sept 1995, pp 203–211Google Scholar
  62. Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13(3–4):597–608CrossRefPubMedGoogle Scholar
  63. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800CrossRefPubMedGoogle Scholar
  64. Giroux H, Vialal P, Bouchard J, Lamy F (1988) Degradation of kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Appl Environ Microbiol 54:3064–3070PubMedPubMedCentralGoogle Scholar
  65. Glass NL, Schmoll M, Cat JHD, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498Google Scholar
  66. Gokhale DV, Puntamabekar US, Deobagkar DN (1986) Xylanase and p-glucosidase production by Aspergillus niger. NCIM 1207. Biotechnol Lett 8:137–138CrossRefGoogle Scholar
  67. Golueke CG (1992) Bacteriology of composting. Biocycle 33:55–57Google Scholar
  68. Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttila M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503CrossRefPubMedGoogle Scholar
  69. Grajek W (1987) Production of D-xylanases by thermophilic fungi using different methods of culture. Biotechnol Lett 9:353–356CrossRefGoogle Scholar
  70. Grajek W (1988) Production of protein by thermophilic fungi from sugar beet pulp in solid state fermentation. Biotechnol Bioeng 32(1):255–260CrossRefPubMedGoogle Scholar
  71. Griffith GW, Ozkose E, Theodoroua MK, Davies DR (2009) Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol 2:87–97CrossRefGoogle Scholar
  72. Guillén F, Martinez AT, Martinez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611CrossRefPubMedGoogle Scholar
  73. Gulati SL (1989) Physiological and enzymological problems of Trichoderma reesei a.M. 9414 associated with scale up of the process. In: Rameshwar S (ed). In: Proc. natl. seminar on biotechnol. lignin degradation. Indian Vet. Res. Inst., Izatnagar, 20–21 Dec, pp 64–71Google Scholar
  74. Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sust Energ Rev 42:712–725CrossRefGoogle Scholar
  75. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645CrossRefPubMedGoogle Scholar
  76. Gusakov AV (2013) Cellulases and hemicellulases in the 21st century race for cellulosic ethanol. Biofuels 4(6):567–569CrossRefGoogle Scholar
  77. Gutiérrez A, Caramelo L, Prieto A, Martínez MJ (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Appl Environ Microbiol 60:1783–1788Google Scholar
  78. Gutierrez-Correa M, Tengerdy RP (1998) Xylanase production of fungal mixed culture solid state substrate fermentation on sugarcane bagasse. Biotechnol Lett 20:45–47CrossRefGoogle Scholar
  79. Gutierrez-Correa M, Portal L, Moreno P, Tengerdy RP (1999) Mixed culture solid state fermentation of Trichoderma reesei with Aspergillus niger on sugarcane bagasse. Bioresour Technol 68:173–178CrossRefGoogle Scholar
  80. Hang Won K, Inkoo R, Minflee N, Hyang P, Fin Ho K, Kang HW, Rhee IK, Nam MH, Park HM, Kim JH (1995) J Agric Sci Soil Fertilizers 37(2):26 and 274Google Scholar
  81. Hankin L, Anagniostakis SKL, Poincelot RP (1976) Compost by biodegradation of leaves. In: Sharply MJ, Kaplan AM (eds) Proc III international biodegradation symposium. Appl. Sci. Pub., London, pp 701–709Google Scholar
  82. He X, Traina SJ, Logan TJ (1992) Chemical properties of municipal solid waste composts. J Environ Qual 54:1316–1323Google Scholar
  83. Hegarty BM, Curran PMT (1985) The bio-deterioration of beach by marine and non-marine fungi in response to temperature, pH, light and dark. Int Biodeterior Bull 21:11–18Google Scholar
  84. Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10(2):122–126CrossRefGoogle Scholar
  85. Henna P (1975) Model for decomposition of organic material by microorganisms. Soil Biol Biochem 7:161–169CrossRefGoogle Scholar
  86. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for bio-fuels production. Science 315:804–807CrossRefPubMedPubMedCentralGoogle Scholar
  87. Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer E (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1(2):323–341CrossRefGoogle Scholar
  88. Holder NHM, Kilian SG, Preez JC (1989) Yeast biomass from bagasse hydrolysates. Biol Wastes 28:239–246CrossRefGoogle Scholar
  89. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45CrossRefPubMedPubMedCentralGoogle Scholar
  90. Horwath WR, Elliott LF (1996) Rye grass straw component decomposition during mesophiles and thermophilic incubations. Biol Fertil Soils 21:227–232CrossRefGoogle Scholar
  91. Ishihara T (1983) Effect of pH in the oxidation of syringic acid by fungal laccase. Mokuzai Gakkaishi 29:801–805Google Scholar
  92. Jain A, Johri BN, Jain A (1999) Partitioning of an extracellular xylanase produced by a thermophilic fungus Melanocarpus albomyces IIS-68 in an aqueous two phase system. Bioresour Technol 67(2):205–207Google Scholar
  93. Jaramillo PMD, Gomes HAR, Monclaro AV, Silva COG (2015) Lignocellulose degrading enzymes: an overview of the global market. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester, pp 73–85Google Scholar
  94. Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290–296Google Scholar
  95. Jhorar BS, Phogat V, Malik RS (1991) Kinetics of composting rice straw with glue waste at different carbon: nitrogen ratios in a semiarid environment. Arid Soil Res Rehabil 5(4):297–306Google Scholar
  96. Johansen KS (2016) Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation. Trends Plant Sci 21(11):926–936CrossRefPubMedGoogle Scholar
  97. Kahlon SS, Dass SK (1987) Biological conversion of paddy straw into feed. Biol Wastes 22:11–21CrossRefGoogle Scholar
  98. Kakezawa M, Mimura A, Takahara Y (1992) Application of two step composting process to rice straw compost. Soil Sci Plant Nutr 38(1):43–50CrossRefGoogle Scholar
  99. Kalogeris E, Christakopoulos P, Katapodis I, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Process Biochem 38:1099–1104CrossRefGoogle Scholar
  100. Kamra DN, Zadrazil F (1986) Influence of oxygen and carbon dioxide on lignin degradation in solid state fermentation of wheat straw with Stropharia rugosoannulata. Biotechnol Lett 7:345–340Google Scholar
  101. Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kanotra S, Mathur RS (1994) Biodegradation of paddy straw with cellulolytic fungi and its application on wheat crop. Bioresour Technol 47:185–188CrossRefGoogle Scholar
  103. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87CrossRefPubMedGoogle Scholar
  104. Kim L, HJ CIG, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98(20):8469–8480CrossRefPubMedGoogle Scholar
  105. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameter on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285CrossRefGoogle Scholar
  106. Klamer M, Sochting U, Szmid, RAK (1998) Fungi in a controlled compost system with special emphasis on the thermophilic fungi. In: Proceedings of the international symposium on composting and use of composted materials for horticulture, Auchincruve, Ayr, V.K. 5–11 Apr Acta Horticulture, vol 469, pp 405–413Google Scholar
  107. Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Ludwig R (2016) Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352(6289):1098–1101CrossRefPubMedGoogle Scholar
  108. Kracher D, Ludwig R (2016) Cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature—a review. J Land Manag Food Environ 67:145–163Google Scholar
  109. Krishna C, Chandrasekara M (1996) Banana waste as substrate for alpha-amylase production by Bacillus subtilis (B.T.K. 106) under solid state fermentation. Appl Microbiol Biotechnol 46(2):106–111CrossRefGoogle Scholar
  110. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  111. Ladisch MR, Lin KW, Voloch M, Tsao G (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microbial Technol 5:8–16CrossRefGoogle Scholar
  112. Lei-Fei V, Gheynst JS, Fei L (1998) Community structure analysis of rice straw and grape pomace. Composting using phospholipid fatty acid analysis. In: ASAE annual international meeting, Orlando, 12–16 July 1998, p 13Google Scholar
  113. Linton SM, Greenaway P (2004) Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes. J Exp Biol 207:4095–4104CrossRefPubMedGoogle Scholar
  114. Liu X, Ma Y, Zhang M (2015) Research advances in expansins and expansion like proteins involved in lignocellulose degradation. Biotechnol Lett 37(8):1541–1551Google Scholar
  115. Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 1125:308–321CrossRefPubMedGoogle Scholar
  116. Lopez MJ, Elorrieta MA, Vargas-Garcia MC, Suarez Estrella F, Moreno J (2002) The effect of aeration on the biotransformation of lignocellulosic wastes by white rot fungi. Bioresour Technol 81:123–129CrossRefPubMedGoogle Scholar
  117. Lo Leggio L, Simmons TJ, Poulsen JCN, Frandsen KEH, Hemsworth GR, Stringer MA, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 22(6):5961CrossRefGoogle Scholar
  118. Mani MT, Marimuthu T (1992) Utilization of Pleurotus spp. for decomposing coconut coir pith. Mushroom Res 1(1):49–51Google Scholar
  119. Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K (2013) Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzym Microb Technol 52(6–7):358–369CrossRefGoogle Scholar
  120. Martinez (2016) How to break down crystalline cellulose. Science 352(6289):1050–1051CrossRefPubMedGoogle Scholar
  121. Maziero R, Zadrazil F (1994) Effects of different heat pre-treatments of wheat straw on its microbial activity and colonization by different tropical and sub-tropical edible mushrooms. World J Microbiol Biotechnol 10(7):374–380CrossRefPubMedGoogle Scholar
  122. Mehta V, Bakshi A, Gupta JK, Kaushal SC (1990) Cellulolytic activities of Pleurotus florida on rice straw. Indian J Appl Pure Biol 5(1):15–18Google Scholar
  123. Miller TF, Srinivasan VR (1983) Production of single cell protein from cellulose by Aspergillus terreus. Biotechnol Bioeng 25:1509–1519CrossRefPubMedGoogle Scholar
  124. Ming L, Cen X, Piel I, Cen PL (1999) Cellulose production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34:909–912CrossRefGoogle Scholar
  125. Moo-Young M, Moreira AR, Tengerdy RP (1983) Principles of solid state fermentation. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi. Fungal technology, vol 4. Arnold Pub., London, pp 117–144Google Scholar
  126. Moubasher AH, Abdel-Hafez S, Abdel-Fattah HM, Moharram AM (1984) Fungi of wheat and broad bean straw composts. Thermophilic fungi. Mycopathologia 84(2–3):65–71CrossRefGoogle Scholar
  127. Muniswaram PKA, Charyulu NCLN (1994) Solid state fermentation of coconut coir pith for cellulase production. Enzyme Microbial Technol 16:436–490CrossRefGoogle Scholar
  128. Nandi N, Hajra JM, Sinha NB (1996) Microbial synthesis of humus from rice straw following two step composting process. J Indian Soc Soil Sci 44(3):413–415Google Scholar
  129. Nigam P, Pandey A, Prabhu KA (1988) Fermentation of bagasse by submerged fungal cultures—effect of nitrogen sources. Biol Wastes 23:313–317CrossRefGoogle Scholar
  130. Olayinka A, Adebaya A (1984) Effect of incubating temperatures and different sources of N and P on decomposition of saw dust in soil. Agric Waste 11:293–306CrossRefGoogle Scholar
  131. Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK (2001) Cyllamyces aberensis gen.nov. sp.nov, a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673Google Scholar
  132. Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124(1):1069–1079CrossRefGoogle Scholar
  133. Park YS, Yum DY, Bai DH, Yu JH (1992) Xylanase from alkaliphilic Bacillus sp.YC-335. Biosci Biotechnol Biochem 56:1355–1356CrossRefGoogle Scholar
  134. Patel I, Kracher D, Ma S, Garajova S, Haon M, Faulds CB, Record E (2016) Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis. Biotechnol Biofuels 20(9):108CrossRefGoogle Scholar
  135. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448CrossRefPubMedGoogle Scholar
  136. Qin YM, Tao H, Liu YY, Wang YD, Zhang JR, Tang AX (2013) A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose. J Biotechnol 168(1):24–31CrossRefPubMedGoogle Scholar
  137. Rajaram S, Varma A (1990) Production and characterization of xylanase from Bacillus thermoalkalophilus grown on agricultural wastes. Appl Microbiol Biotechnol 34:141–144CrossRefGoogle Scholar
  138. Rajarathnam S, Bano Z (1989) Pleurotus mushrooms III Biotransformation of natural lignocellulosic wastes: chemical applications and implications. Crit Rev Food Sci Nutr 28:31–113CrossRefPubMedGoogle Scholar
  139. Rajarathnam S, Wankhede DB, Bano Z (1987) Degradation of rice straw by Pleurotus flabellatus. J Chem Technol Biotechnol 37:203–214CrossRefGoogle Scholar
  140. Rajasekaran P, Sampatkumar M (1981) Physico-chemical and microbiological properties of plant wastes treated with sewage sludge. Agric Waste 3:262–275CrossRefGoogle Scholar
  141. Rathner R, Petz S, Tasnadi G, Koller M (2017) Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17a-ethinylestradiol from differently polluted wastewater bodies. J Environ Chem Eng 5:1920–1926CrossRefGoogle Scholar
  142. Reese ET (1956) A microbiological process report: enzymatic hydrolysis of cellulose. Appl Microbiol 4:39–45PubMedPubMedCentralGoogle Scholar
  143. Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6(6):1858CrossRefGoogle Scholar
  144. Roche N, Desgranges C, Durand A (1994) Study on the solid state production of a thermostable alpha-L-arabinofuranosidase of Thermoascus eurentiecus on sugar beet pulp. J Biochem 38(1):43–50Google Scholar
  145. Rocha VN, Maeda R, Pereira NF, Kern M, Elias L, Simister R, McQueenMason SJ (2016) Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnol Prog 32(2):327–336CrossRefGoogle Scholar
  146. Rosen, Schugerl (1983) In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. Amer. Soc. Microbial, Washington, DCGoogle Scholar
  147. Ross RC, Harris PJ (1983) The significance of thermophilic fungi in mushroom compost preparation. Sci Hortic 20(1):61–70CrossRefGoogle Scholar
  148. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291CrossRefPubMedGoogle Scholar
  149. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Penttilä M (2002) Swollen in, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211Google Scholar
  150. Sanches (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefGoogle Scholar
  151. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedGoogle Scholar
  152. Sermanni GG, Annibale AD, Lena GO, Vitale NS, Mattia ED, Minelli V (1994) The production of exo-enzymes by lentinus edodes and Pleurotus ostreatus and their use for upgrading corn straw. Bioresour Technol 48:173–178CrossRefGoogle Scholar
  153. Shaikh SA, Khire JM, Khan M (1997) Production of beta-galactosidase from thermophilic fungus Rhizomucor sp. J Ind Microbiol Biotechnol 19(4):239–245CrossRefGoogle Scholar
  154. Sharma HS, Johri BN (1992) The role of thermophilic fungi in Agriculture. In: Hand book of applied mycology, vol 4. pp 707–728Google Scholar
  155. Sharma OK, Niwas S, Behera BK (1991) Solid state fermentation of bagasse for production of cellulase enzyme from cellulolytic fungi and extent of simultaneous production of reducing sugars in the fermenter. J Microbiol Biotechnol 6:7–14Google Scholar
  156. Sharma HSS, Lyons G, Chambers J (2000) Comparison of the changes in mushroom (Agaricus bisporus) during window and bunker stages of phase I and lt. Ann Appl Biol 136(1):59–68CrossRefGoogle Scholar
  157. Silva IS, Menezes CR, Franciscon E, Santos EC (2010) Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under microaerobic conditions. Braz Arch Biol Technol 53:693–699CrossRefGoogle Scholar
  158. Sims TM, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuel technologies: an overview of current industry and RD activities. https://www.iea.org/publications/freepublications/publication/2nd_Biofuel_Gen.pdf
  159. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, O’Malley MA (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351(6278):1192–1195.  https://doi.org/10.1126/science.aad1431CrossRefPubMedPubMedCentralGoogle Scholar
  160. Stanek M, Bisko NA (1982) Regulation of microbiological process in substrate for oyster mushroom (Pleurotus ostreatus) culture. Sbamik-UVT/Z-Zahradnictvi 9(3):221–233Google Scholar
  161. Straatsma G, Samson RA, Olijnsma TW, Op-Den-Camp HJM, Gerrits JPG, Van-Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60(2):454–458PubMedPubMedCentralGoogle Scholar
  162. Straatsma G, Samson RA, Olijnsma TW, Gerrits JPG, Op-Den-Camp-HJM, Cariensven, LJLD (1995) Bioconversion of cereal straw into mushroom compost. Can J Bot 73:1019–1024Google Scholar
  163. Sun FF, Hong J, Hu J, Saddle JN, Fang X, Zhang Z, Shen S (2015) Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzym Microb Technol 79-80:42–48CrossRefGoogle Scholar
  164. Suyanto T, Ohtsuki S, Yazaki S, Ui A, Mimura (2003) Isolation of a novel thermophilic fungus Chaetomium sp. novo MS.-017 and description of its palm-oil mill fibre-decomposing properties. Appl Microbiol Biotechnol 60:581–587CrossRefPubMedGoogle Scholar
  165. Takasaki K, Miura T, Kanno M, Tamaki H, Hanada S, Kamagata Y, Kimura N (2013) Discovery of glycoside hydrolase enzymes in an avicel-adapted forest soil fungal community by a metatranscriptomic approach. PLoS One 8(2):e55485.  https://doi.org/10.1371/journal.pone.0055485CrossRefPubMedPubMedCentralGoogle Scholar
  166. Tandon F, Odier E (1988) Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production of Phanerochaete chrysosporium. Appl Environ Microbiol 54:466–472Google Scholar
  167. Tengerdy RP (1985) Solid state fermentation. Trends Biotechnol 3(4):96–99Google Scholar
  168. Tiwari VN, Pathak AN, Lehri LK (1988) Manurial value of compost enriched with rock phosphate and microbial inoculants to green gram. J Indian Soc Soil Sci 36(2):280–283Google Scholar
  169. Tripathi JP, Yadav JS (1991) Comparative ligninolytic and polysaccharolytic potential of an alkaliphilic basidiomycete on native lignocellulose. Int Biodeter Bull 27:49–59CrossRefGoogle Scholar
  170. Tsukihara T, Honda Y, Sakai R, Watanabe T (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white-rot fungus, Pleurotus ostreatus. J Biotechnol 126:431–439CrossRefPubMedGoogle Scholar
  171. Vander-Gheynst JS, May BA, Karagosian M (2000) The effects of cultivation methods on the growth rate and shelf life of Lagenidium giganteum. In: ASAE annual international meeting Milwaukee, 9–12 July, p 5Google Scholar
  172. Venkateswarlu G, Krishna PSM, Pandey A, Rao LV, Pandey A (2000) Evaluation of Amycoatopsis mediterranei VA18 for production of rifamycin B. Process Biochem 36(4):305–309Google Scholar
  173. Wahyono S, Sahwan FL (1998) Solid waste composting trend and project. Biocycle 39(10):66–68Google Scholar
  174. Wiegant WM (1992) Growth characteristics of the thermophilic fungi Scytalidium thermophilum in relation to production of mushroom compost. Appl Environ Microbiol 58(4):1301–1307PubMedPubMedCentralGoogle Scholar
  175. Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297CrossRefPubMedGoogle Scholar
  176. Woiciechowski AL, Porto de Souza Vandenberghe L, Karp SG (2013) The pre-treatment step in lignocellulosic biomass conversion: current systems and new biological systems. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, HeidelbergGoogle Scholar
  177. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209CrossRefPubMedGoogle Scholar
  178. Wyman CE, Ragauskas AJ (2015) Lignin bioproducts to enable biofuels. Biofuels Bioprod Biorefin 9(5):447–449CrossRefGoogle Scholar
  179. Xu Q, Luo Y, Ding SY, Himmel ME, Bu L, Lamed R, Bayer EA (2011) Multifunctional enzyme systems for plant cell wall degradation, pp 15–25Google Scholar
  180. Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK (2007) The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol 17:800–805PubMedGoogle Scholar
  181. Yuan TQ, Xu F, Sun RC (2013) Role of lignin in a bio-refinery: separation characterization and valorization. J Chem Technol Biotechnol 88(3):346–352CrossRefGoogle Scholar
  182. Zadrazil F (1976) Release of water soluble compounds in the breakdown of straw by basidiomycetes as a basis for the utilization of straw. Z Acker Pflanzenbau 142:44–47Google Scholar
  183. Zadrazil F, Puniya AK (1995) Studies on effect of particle size on solid state fermentation of sugarcane bagasse into animal feed using white rot fungi. Bioresour Technol 54:85–87CrossRefGoogle Scholar
  184. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26(9):1341–1417CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adesh Kumar
    • 1
  • Divya Srivastva
    • 1
  • Ramesh Chand
    • 2
  1. 1.Department of Plant Molecular Biology and Genetic EngineeringN.D. University of Agriculture and TechnologyFaizabadIndia
  2. 2.Department of NematologyN.D. University of Agriculture and TechnologyFaizabadIndia

Personalised recommendations