Advertisement

Integrated Optimization Model for the Fuel Supply Chain of a State Company (SC) in Brazil

  • Daniel Barroso BottinoEmail author
  • José Eugênio Leal
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

Following the adoption of a new price policy by Brazil’s oil SC, questions have arisen regarding the price levels to be adopted in the domestic market. This research describes an optimization network model for the fuel distribution chain in Brazil that integrates with refining planning modeling to estimate the best price scenario to maximize the SOE’s profitability.

Keywords

Network modeling Optimization Downstream supply chain Fuel distribution Oil refining 

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall Inc., New Jersey (1993)Google Scholar
  2. 2.
    Aires, M., Lucena, A., Rocha, R., Santiago, C., Simonetti, L.: Optimizing the petroleum supply chain at Petrobras. In Proceedings of the European Symposium on Computer-Aided Process Engineering – 14, Lisboa, (2004)Google Scholar
  3. 3.
    An, H., Wilhelm, W.E., Searcy, S.W.: Biofuel and petroleum-based fuel supply chain research: a literature review. Biomass Bioenergy 35(9), 3763–3774 (2011)Google Scholar
  4. 4.
    ANP.: Dados Estatísticos. Brasil, dezembro de 2017. Disponível em: http://www.anp.gov.br/dados-estatisticos. Acessado em 24 de julho de 2018 (2018)
  5. 5.
    Botelho, R.: R. P. Estudo de um sistema de distribuição e análise de mercado e fluxos de rede: o caso SIAM. Dissertação de Doutorado. UFSC, Florianópolis, SC (2001)Google Scholar
  6. 6.
    Cormen, T.H., et al.: Algoritmos: teoria e prática. Campus, Rio de Janeiro (2002)Google Scholar
  7. 7.
    Daskin, M.S.: Network and Discrete Location: Models, Algorithms, and Applications. Wiley, Nova York (1995)CrossRefGoogle Scholar
  8. 8.
    Fanchi, J. R., Christiansen, R. L.: Midstream and downstream operations. Chapter 15 (2016)Google Scholar
  9. 9.
    Fiorencio, L., et al.: Investment planning in the petroleum downstream infrastructure Int. Trans. Oper. Res. (2014)Google Scholar
  10. 10.
    Furman, K.C., El-Bakry, A.S., Song, J.H.: Optimization in th oil and gas industry. Optim. Eng. 18, 1 (2017)CrossRefGoogle Scholar
  11. 11.
    Gomes, J.S., Alves, F.B.: O Universo da Indústria Petrolífera: da pesquisa à refinação. Fundação Calouste Gulbenkian, Lisboa (2007)Google Scholar
  12. 12.
    Katzer, J.R., Ramage, M.P., Sapre, A.V.: Petroleum Refining: Poised for Profound Changes. Chem. Eng. Prog. 96(7), 41 (2000)Google Scholar
  13. 13.
    Kazemi, Y., Szmerekovsky, J.: Modeling downstream petroleum supply chain: the importance of multi-mode transportation to strategic planning. Transp. Res. Part E: Logistics Transp. Rev. 83, 111–125 (2015)CrossRefGoogle Scholar
  14. 14.
    Lima, C., Relvas, S., Póvoa, A.B.: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain. Comput. Chem. Eng. 108, 314–336 (2017)CrossRefGoogle Scholar
  15. 15.
    Lorena, L.A.N., et al.: Integração de modelos de localização a Sistemas de Informações Geográficas. Gestão e Produção 8(2), 180–195 (2001)CrossRefGoogle Scholar
  16. 16.
    Mapa, S.M.S., Lima, R.S.: Uso combinado de SIG para transportes e programação linear inteira mista em problemas de localização de instalações. Gest. Prod., São Carlos 19(1), 119–136 (2012)CrossRefGoogle Scholar
  17. 17.
    Oliveira, F., Grossmann, I.E., Hamacher, S.: Accelerating benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain. Comput. Oper. Res. 49, 47–58 (2014)CrossRefGoogle Scholar
  18. 18.
    Oliveira, F., et al.: A framework for crude oil scheduling in an integrated terminal-refinery system under supply uncertainty. Eur. J. Oper. Res. 252 (2016)Google Scholar
  19. 19.
    Petrobras: Nova Política de Precificação de Diesel e Gasolina. Brasil. Disponível em: http://www.investidorpetrobras.com.br/pt/comunicados-e-fatos-relevantes/fato-relevante-diretoria-executiva-aprova-politica-de-precos. Acessado em 15 de novembro de 2017 (2017)
  20. 20.
    Pompermayer, F.M., et al.: A spatial price equilibrium model in the oligopolistic market for oil derivatives: an application to the Brazilian scenario. Pesquisa Operacional 27(3), 517–534 (2007)CrossRefGoogle Scholar
  21. 21.
    Rejowski Jr., R., Pinto, J.M.: An Milp formulation for the scheduling of multiproduct pipeline systems. Braz. J. Chem. Eng. 19(4), 467–474 (2002)CrossRefGoogle Scholar
  22. 22.
    Rodrigues, H., Prata, B.: Um modelo de Programação Linear para a cadeia de suprimentos de petróleo e derivados no Brasil (2013)Google Scholar
  23. 23.
    Shobrys, D.E., White, C.D.: Planning, scheduling and control systems: why can they not work together. Comput. Chem. Eng. 24, 163 (2000)CrossRefGoogle Scholar
  24. 24.
    Tominac, P., Mahalec, V.: A game theoretic framework for petroleum refinery strategic production planning. AIChE J. 63(7), 2751–2763 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringPUC/RioRio de JaneiroBrazil

Personalised recommendations