Forecasting Tanker Freight Rate

  • Rodrigo Ferreira BertolotoEmail author
  • Fernando Luiz Cyrino Oliveira
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)


The practiced freight rates have a great impact on the international trade of crude oil and oil products. This paper aims to verify the performance of dynamic regression models in short-term maritime freight forecasts in the spot market of a crude oil export route.


Freight rate Tanker Dynamic regression 


  1. 1.
    Baltic Exchange. Available at (2018). Accessed in June, 2018
  2. 2.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5 edn. WileyGoogle Scholar
  3. 3.
    Clarksons: Shipping Intelligence Network. Londres. Available at (2018). Accessed in June, 2018
  4. 4.
    Eslami, P., Jung, K., Lee, D., Tjolleng, A.: Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm. Marit. Econ. Logistics 19(3), 538–550 (2017)CrossRefGoogle Scholar
  5. 5.
    Geomelos, N.D., Xideas, E.: Forecasting spot prices in bulk shipping using multivariate and univariate models. Cogent Econ. & Finan. 2(1) (2014)Google Scholar
  6. 6.
    Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. Available at (2014). Accessed in May, 2018
  7. 7.
    Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. Available at (2016). Accessed in May, 2018
  8. 8.
    Ji, M.-J., Zhang, H.-Y., Wang, Q.-B.: Analysis and forecasting of the tanker freight rates based on combined forecasting model. J. Transp. Syst. Eng. Inf. Technol. 12(1), 199–204 (2012)Google Scholar
  9. 9.
    Li, J., Parsons, M.: Forecasting tanker freight rate using neural networks. Marit. Policy Manage. 24(1), 9–30 (1997)CrossRefGoogle Scholar
  10. 10.
    Santos, A.A.P., Junkes, L.N., Pires Jr., F.C.M.: Forecasting period charter rates of VLCC tankers through neural networks: a comparison of alternative approaches. Marit. Econ. Logistics 16(1), 72–91 (2014)CrossRefGoogle Scholar
  11. 11.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)CrossRefGoogle Scholar
  12. 12.
    Souza, R.C., Camargo, M.E.: Análise e Previsão de Séries Temporais: os Modelos ARIMA, 2 edn. Rio de Janeiro (2004)Google Scholar
  13. 13.
    Stellwagen, E., Goodrich, R.: Forecast Pro Statistical Reference Manual. Business Forecast Systems, Belmont (2011)Google Scholar
  14. 14.
    Worldscale. Available at (2018). Accessed in April, 2018
  15. 15.
    Zanini, A.: Redes neurais e regressão dinâmica: um modelo híbrido para previsão de curto prazo da demanda de gasolina automotiva do Brasil. Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro (2000)Google Scholar
  16. 16.
    Zhang, J., Zeng, Q.: Modelling the volatility of the tanker freight market based on improved empirical mode decomposition. Appl. Econ. 49(17), 1655–1667 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rodrigo Ferreira Bertoloto
    • 1
    • 2
    Email author
  • Fernando Luiz Cyrino Oliveira
    • 2
  1. 1.PETROBRAS–Petroleo Brasileiro S.A.Rio de JaneiroBrazil
  2. 2.Industrial Engineering DepartmentPontifical Catholic University of Rio de Janeiro, Rua Marquês de São VicenteRio de JaneiroBrazil

Personalised recommendations