Skip to main content

A Method to Estimate the Oblique Arch Folding Axis for Thumb Assistive Devices

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Abstract

People who use the thumb in repetitive manipulation tasks are likely to develop thumb related impairments from excessive loading at the base joints of the thumb. Biologically informed wearable robotic assistive mechanisms can provide viable solutions to prevent occurring such injuries. This paper tests the hypothesis that an external assistive force at the metacarpophalangeal joint will be most effective when applied perpendicular to the palm folding axis in terms of maximizing the contribution at the thumb-tip as well as minimizing the projections on the vulnerable base joints of the thumb. Experiments conducted using human subjects validated the predictions made by a simplified kinematic model of the thumb that includes a foldable palm, showing that: (1) the palm folding angle varies from \(71.5^{\circ }\) to \(75.3^{\circ }\) (from the radial axis in the coronal plane) for the four thumb-finger pairs and (2) the most effective assistive force direction (from the ulnar axis in the coronal plane) at the MCP joint is in the range \(0^{\circ }< \psi < 30^{\circ }\) for the four thumb-finger pairs. These findings provide design guidelines for hand assistive mechanisms to maximize the efficacy of thumb external assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubin, P.M., Sallum, H., Walsh, C., Stirling, L., Correia, A.: A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA). In: IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2013)

    Google Scholar 

  2. Cempini, M., Cortese, M., Vitiello, N.: A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans. Mechatron. 20(2), 705–716 (2015)

    Article  Google Scholar 

  3. Chang, L.Y., Matsuoka, Y.: A Kinematic thumb model for the act hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1000–1005 (2006)

    Google Scholar 

  4. Colditz, J.C.: The biomechanics of a thumb carpometacarpal immobilization splint: design and fitting. J. Hand Ther. 13(3), 228–235 (2000)

    Article  Google Scholar 

  5. Cotugno, G., Althoefer, K., Nanayakkara, T.: The role of the thumb: study of finger motion in grasping and reachability space in human and robotic hands. IEEE Trans. Syst. Man Cybern. 47(7), 1061–1070 (2016)

    Article  Google Scholar 

  6. Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  7. De Monsabert, B.G., Rossi, J., Berton, E., Vigouroux, L.: Quantification of hand and forearm muscle forces during a maximal power grip task. Med. Sci. Sports Exerc. 44(10), 1906–1916 (2012)

    Article  Google Scholar 

  8. Diftler, M., et al.: RoboGlove - a robonaut derived multipurpose assistive device (2014)

    Google Scholar 

  9. Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46(1), 66–77 (2016)

    Article  Google Scholar 

  10. Kang, B.B., Lee, H., In, H., Jeong, U., Chung, J., Cho, K.J.: Development of a polymer-based tendon-driven wearable robotic hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3750–3755 (2016)

    Google Scholar 

  11. Ladd, A.L., et al.: The thumb carpometacarpal joint: anatomy, hormones, and biomechanics. Instr. Course Lect. 62, 165–179 (2013)

    Google Scholar 

  12. Nanayakkara, V., et al.: Kinematic analysis of the human thumb with foldable palm. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 226–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40379-3_23

    Chapter  Google Scholar 

  13. Nanayakkara, V.K., Cotugno, G., Vitzilaios, N., Venetsanos, D., Nanayakkara, T., Sahinkaya, M.N.: The role of morphology of the thumb in anthropomorphic grasping: a review. Front. Mech. Eng. 3(5) (2017). https://doi.org/10.3389/fmech.2017.00005

  14. Neumann, D.A., Bielefeld, T.: The carpometacarpal joint of the thumb: stability, deformity, and therapeutic intervention. J. Orthop. Sports Phys. Ther. 33(7), 386–399 (2003)

    Article  Google Scholar 

  15. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  16. Sangole, A.P., Levin, M.F.: Arches of the hand in reach to grasp. J. Biomech. 41(4), 829–837 (2008)

    Article  Google Scholar 

  17. Santos, V.J., Valero-Cuevas, F.J.: Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans. Biomed. Eng. 53(2), 155–163 (2006)

    Article  Google Scholar 

  18. Valero-Cuevas, F.J., Johanson, M.E., Towles, J.D.: Towards a realistic biomechanical model of the thumb: the choice of Kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7), 1019–1030 (2003)

    Article  Google Scholar 

  19. Wu, J.Z., et al.: Inverse dynamic analysis of the biomechanics of the thumb while pipetting: a case study. Med. Eng. Phys. 34(6), 693–701 (2012)

    Article  Google Scholar 

  20. Xiloyannis, M., Cappello, L., Khanh, D.B., Yen, S.C., Masia, L.: Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1213–1219 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visakha K. Nanayakkara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nanayakkara, V.K. et al. (2019). A Method to Estimate the Oblique Arch Folding Axis for Thumb Assistive Devices. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics