Assessment of Loads Exerted on the Lumbar Segment of the Vertebral Column in Everyday-Life Activities – Application of Methods of Mathematical Modelling

  • Hanna ZadońEmail author
  • Robert Michnik
  • Katarzyna Nowakowska
  • Andrzej Myśliwiec
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1011)


This work aimed to determine loads exerted on the muscular and skeletal system in the segment of the lumbar spine during the execution of everyday activities, such as sitting down and getting up from a chair as well as lifting a 10 kg object off the table of various heights – 50 and 72 cm. Simulations were made by means of a dynamic mathematical model of the human motor system – GaitFullModel developed in the AnyBody Modeling System. Values of reaction forces in intervertebral joints and selected muscular forces in the lumbar segment of the spine were determined by solving an inverse dynamics problem. It was achieved by using methods of static optimization which adopted a criterion of minimization of the sum of the cubes of the relation of muscular force to its maximum force. The obtained results were standardized according to the body weight(BW) of the examined person. The highest values of loads were obtained in segment L5-S1: \(2.7\pm 0.16\)N/BW for sitting down, \(1.77\pm 0.22\)N/BW – getting up from the chair, \(4.11\pm 0.22\)N/BW – object lifting from a height of 50 cm and \(2.68\pm 0.11\)N/BW – object lifting from a height of 72 cm.


Anybody modeling system Mathematical modeling Musculoskeletal system Lumbar spine Loads 



The study was realized within the project “DISC4SPINE dynamic individual stimulation and control for spine and posture interactive rehabilitation” (grant no. POIR.04.01.02-00-0082/17-00).


  1. 1.
    Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the anybody modeling system. Simul. Modell. Pract. Theory 14, 1100–1111 (2016)CrossRefGoogle Scholar
  2. 2.
    de Zee, M., et al.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219–1227 (2017)CrossRefGoogle Scholar
  3. 3.
    Dreischarf, M., Albiol, L., Zander, T., Arshad, R., Grichen, F., Bergmann, G., Schmidt, H., Rohlmann, A.: In vivo implant forces acting on a vertebral body replacement during upper body flexion. J. Biomech. 48(4), 560–565 (2015)Google Scholar
  4. 4.
    Dreischarf, M., Rohlmann, A., Graichen, F., Bergmann, G.: In vivo loads on vertebral body replacement during different lifting techniques. J. Biomech. 49, 890–895 (2016)CrossRefGoogle Scholar
  5. 5.
    Główny Urząd Statystyczny, Zdrowie i zachowanie zdrowotne mieszkańców Polski w świetle Europejskiego Ankietowego Badania Zdrowia (EHIS) 2014 r., (Statistics Poland, Health and health behavior of Polish citizens in the light of the European Union Health Survey (EHIS) 2014), Information Note, 1–12 (2015) (in Polish)Google Scholar
  6. 6.
    Jurkojć, J., Michnik, R., Pauk, J.: Identification of muscle forces acting in lower limbs with the use of planar and spatial mathematical model. J. Vibroeng. 11(3), 566–570 (2009)Google Scholar
  7. 7.
    Nowakowska, K., Gzik, M., Michnik, R., Myśliwiec, A., Jurkojć, J., Suchoń, S., Burkacki M.: The loads acting on lumbar spine during sitting down and standing up. In: Gzik, M., et al. (eds.) Innovation in Biomedical Engineering, Advances in Intelligent System and Computing, vol. 526, pp. 169–176. Springer, Cham (2017)Google Scholar
  8. 8.
    Nowakowska, K., Michnik, R., Myśliwiec, A., Chrzan M.: Impact of strengthening of the erector spinae muscle on the values of loads of the muskuloskeletal system in the lumbar spine section. In: Fuis, V. (ed.) 23rd International Conference on Engineering Mechanics 2017, May 15–18, 2017, Svratka, Czech Republic, Book of full texts, pp. 718–721 (2017)Google Scholar
  9. 9.
    Nowakowska, K., Michnik, R., Jochymczyk-Woźniak, K., Jurkojć, J., Kopyta, I.: Evaluation of locomotor function in patients with CP based on muscle length changes. In: Gzik, M., et al. (eds.) Innovation in Biomedical Engineering, Advances in Intelligent System and Computing, vol. 526, pp. 161–168. Springer, Cham (2017)Google Scholar
  10. 10.
    Rasmussen, J., de Zee, M., Carbes, S.: Validation of a biomechanical model of the lumbar spine, Congress XXII of the International Society of Biomechanics (2009)Google Scholar
  11. 11.
    Rasmussen, J., Vondrak, V., Damsgaard, M., de Zee, M., Christensen, S.T.: The anybody project–computer analysis of the human body. Biomech. Man, 270–274 (2002)Google Scholar
  12. 12.
    Rohlmann, A., Pohl, D., Bender, A., Graichen, F., Dymke, J.: Activities of everyday life with high spinal loads. PloS ONE 9(5), e98510 (2014)CrossRefGoogle Scholar
  13. 13.
    Rohlmann, A., Zander, T., Graichen, F., Bergmann, G.: Lifting up and laying down a weight causes high spinal loads. J. Biomech. 46, 511–514 (2013)CrossRefGoogle Scholar
  14. 14.
    Stambolian, D., Eltoukhy, M., Asfour, S.: Development and validation of a three dimensional dynamic biomechanical lifting model for lower back evaluation for careful box placement. Int. J. Ind. Ergon. 54, 10–18 (2016)CrossRefGoogle Scholar
  15. 15.
    Wilke, H., Neef, P., Caimi, M., Hooglanf, T., Claes, L.E.: New in vivo measurements of pressures in the intervertebral disc in daily life. SPINE 24(8), 755–762 (1999)CrossRefGoogle Scholar
  16. 16.
    Wilke, H., Neef, P., Hinz, B., Seidel, H., Claes, L.: Intradiscal pressure together with antropometric data–a data set for the validation of models. Clin. Biomech. 16(1), 111–126 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hanna Zadoń
    • 1
    Email author
  • Robert Michnik
    • 1
  • Katarzyna Nowakowska
    • 1
  • Andrzej Myśliwiec
    • 2
  1. 1.Faculty of Biomedical Engineering, Department of BiomechatronicsSilesian University of TechnologyZabrzePoland
  2. 2.Faculty of PhysiotherapyThe Jerzy Kukuczka Academy of Physical Education in KatowiceKatowicePoland

Personalised recommendations