Guaranteed Deterministic Approach to Superhedging: Lipschitz Properties of Solutions of the Bellman–Isaacs Equations

  • Sergey N. Smirnov
Part of the Static & Dynamic Game Theory: Foundations & Applications book series (SDGTFA)


For the discrete-time superreplication problem, a guaranteed deterministic formulation is proposed: the problem is to ensure the cheapest coverage of the contingent claim on an American option under all admissible scenarios. These scenarios are set by a priori defined compacts depending on the price history; the price increment at each moment of time must lie in the corresponding compact. The market is considered without trading constraints and transaction costs. The problem statement is game-theoretic in nature and leads directly to the Bellman–Isaacs equations of a special form under the assumption of no trading constraints. In the present study, we estimate the modulus of continuity of uniformly continuous solutions, including the Lipschitz case.


Guaranteed estimates Deterministic price dynamics Super-replication Option Arbitrage No arbitrage opportunities Bellman–Isaacs equations Multivalued mapping Semicontinuity Continuity Modulus of continuity Lipschitz functions 


  1. 1.
    Bernhard, P., Engwerda, J.C., Roorda, B., Schumacher, J., Kolokoltsov, V., Saint-Pierre, P., Aubin, J.-P.: The Interval Market Model in Mathematical Finance: Game-Theoretic Methods, p. 348. Springer, New York (2013)CrossRefGoogle Scholar
  2. 2.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation, p. 452. Springer, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Diedonné, J.: Foundations of Modern Analysis, p. 361. Academic, New York (1960)Google Scholar
  4. 4.
    Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor function. Expo. Math. 24(1), 1–37 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis: Theory, vol. I. Mathematics and Its Applications, vol. 419, p. 968. Springer, Berlin (1997)CrossRefGoogle Scholar
  6. 6.
    Jones, F.B.: Connected and disconnected plane sets and the functional equation f(x + y) = f(x) + f(y). Bull. Am. Math. Soc. 48, 115–120 (1942)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Leichtweiss, K.: Konvexe Mengen, p. 330. Springer, Berlin (1980) (in German)CrossRefGoogle Scholar
  8. 8.
    Polovinkin, E.S.: Mnogoznachniy analiz i differencialniye vklucheniya [Set-valued analysis and differential inclusions], p. 524. Nauka, FizMatLit Publication, Moscow (2015) (in Russian)Google Scholar
  9. 9.
    Smirnov, S.N.: A guaranteed deterministic approach to superhedging: financial market model, trading constraints and Bellman–Isaacs equations. Math. Game Theory Appl. 10(4), 59–99 (2018) (in Russian)zbMATHGoogle Scholar
  10. 10.
    Smirnov, S.N.: A guaranteed deterministic approach to superhedging: no arbitrage market condition. Math. Game Theory Appl. 11(2), 68–95 (2019) (in Russian)Google Scholar
  11. 11.
    Smirnov, S.N.: A guaranteed deterministic approach to superhedging: the proprieties of semicontinuity and continuity of the Bellman–Isaacs equations. Math. Game Theory Appl. (2019, in print) (in Russian)Google Scholar
  12. 12.
    Titman, A.F.: Theory of approximation of functions of a real variable. In: International Series of Monographs in Pure and Applied Mathematics, vol. 34, p. 644. Pergamon Press, Oxford (1963)Google Scholar
  13. 13.
    Rockafellar, R.T.: Convex Analysis, p. 451. Princeton University Press, Princeton (1970)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergey N. Smirnov
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations