Alternative Indexes

  • Paweł D. DomańskiEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 245)


Alternative indexes for the CPA task go beyond the classical and commonly used assessment methodologies. They try to address the practical aspects, which are frequently met in the process industry reality. Alternative indexes extend classical research. They try to capture nonlinearities, complexity, non-Gaussian properties, fat-tails, human impact and so on. Alternative non-Gaussian approaches, like persistence, fractal, multi-fractal, fractional order or entropy based indexes are still not well established. The following chapter brings them closer in details.


  1. 1.
    Abry, P., Veitch, D.: Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 44(1), 2–15 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barabási, A.L., Szépfalusy, P., Vicsek, T.: Multifractal spectra of multi-affine functions. Phys. A: Stat. Mech. Appl. 178(1), 17–28 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bardet, J.M., Bertrand, P.: Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal. 28(1), 1–52 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barunik, J., Aste, T., Di Matteo, T., Liu, R.: Understanding the source of multifractality in financial markets. Phys. A: Stat. Mech. Appl. 391(17), 4234–4251 (2012)CrossRefGoogle Scholar
  5. 5.
    Beran, J.: Statistics for Long-Memory Processes. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  6. 6.
    Borak, S., Misiorek, A., Weron, R.: Models for heavy-tailed asset returns. In: Cizek, P., Härdle, K.W., Weron, R. (eds.) Statistical Tools for Finance and Insurance, 2nd edn, pp. 21–56. Springer, New York (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, L.J., Zhang, J., Zhang, L.: Entropy information based assessment of cascade control loops. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS (2015)Google Scholar
  8. 8.
    Clegg, R.G.: A practical guide to measuring the Hurst parameter. Int. J. Simul.: Syst. Sci. Technol. 7(2), 3–14 (2006)Google Scholar
  9. 9.
    Das, L., Srinivasan, B., Rengaswamy, R.: Data driven approach for performance assessment of linear and nonlinear kalman filters. In: 2014 American Control Conference, pp. 4127–4132 (2014)Google Scholar
  10. 10.
    Das, L., Srinivasan, B., Rengaswamy, R.: Multivariate control loop performance assessment with Hurst exponent and mahalanobis distance. IEEE Trans. Control Syst. Technol. 24(3), 1067–1074 (2016a)CrossRefGoogle Scholar
  11. 11.
    Das, L., Srinivasan, B., Rengaswamy, R.: A novel framework for integrating data mining with control loop performance assessment. AIChE J. 62(1), 146–165 (2016b)CrossRefGoogle Scholar
  12. 12.
    Domański, P.D.: Non-gaussian properties of the real industrial control error in SISO loops. In: Proceedings of the 19th International Conference on System Theory, Control and Computing, pp. 877–882 (2015)Google Scholar
  13. 13.
    Domański, P.D.: Fractal measures in control performance assessment. In: Proceedings of IEEE International Conference on Methods and Models in Automation and Robotics MMAR, Miedzyzdroje, Poland, pp. 448–453 (2016a)Google Scholar
  14. 14.
    Domański, P.D.: Non-Gaussian and persistence measures for control loop quality assessment. Chaos: Interdiscip. J. Nonlinear Sci. 26(4), 043,105 (2016b)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Domański, P.D.: Multifractal properties of process control variables. Int. J. Bifurc. Chaos 27(6), 1750,094 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Domański, P.D.: Control quality assessment using fractal persistence measures. ISA Trans. 90, 226–234 (2019). Scholar
  17. 17.
    Domański, P.D., Gintrowski, M.: Alternative approaches to the prediction of electricity prices. Int. J. Energy Sect. Manag. 11(1), 3–27 (2017)CrossRefGoogle Scholar
  18. 18.
    Domański, P.D., Ławryńczuk, M.: Assessment of predictive control performance using fractal measures. Nonlinear Dyn. 89, 773–790 (2017a)CrossRefGoogle Scholar
  19. 19.
    Domański, P.D., Ławryńczuk, M.: Assessment of the GPC control quality using non-Gaussian statistical measures. Int. J. Appl. Math. Comput. Sci. 27(2), 291–307 (2017b)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Domański, P.D., Ławryńczuk, M.: Control quality assessment of nonlinear model predictive control using fractal and entropy measures. In: Preprints of the First International Nonlinear Dynamics Conference NODYCON 2019, Rome, Italy (2019)Google Scholar
  21. 21.
    Domański, P.D., Golonka, S., Jankowski, R., Kalbarczyk, P., Moszowski, B.: Control rehabilitation impact on production efficiency of ammonia synthesis installation. Ind. Eng. Chem. Res. 55(39), 10,366–10,376 (2016)CrossRefGoogle Scholar
  22. 22.
    Feder, J.: Fractals. Springer Science & Business Media (2013)Google Scholar
  23. 23.
    Field, A.J., Harder, U., Harrison, P.G.: Measurement and modelling of self-similar traffic in computer networks. IEE Proc. Commun. 151(4), 355–363 (2004)CrossRefGoogle Scholar
  24. 24.
    Franzke, C.L.E., Graves, T., Watkins, N.W., Gramacy, R.B., Hughes, C.: Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity. Philos. Trans. Royal Soc. A 370(1962), 1250–1267 (2012)CrossRefGoogle Scholar
  25. 25.
    Gao, J., Hu, J., Tung, W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68(3), 431–444 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221–238 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Grahovac, D., Leonenko, N.N.: Detecting multifractal stochastic processes under heavy-tailed effects. Chaos Solitons Fractals 65, 78–89 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Green, E., Hanan, W., Heffernan, D.: The origins of multifractality in financial time series and the effect of extreme events. Eur. Phys. J. B 87(6), 1–9 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Grigolini, P., Palatella, L., Raffaelli, G.: Asymmetric anomalous diffusion: an efficient way to detect memory in time series. Fractals 9(4), 439–449 (2001)CrossRefGoogle Scholar
  30. 30.
    Habib, A., Sorensen, J.P.R., Bloomfield, J.P., Muchan, K., Newell, A.J., Butler, A.P.: Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. J. Hydrol. 549, 715–730 (2017)CrossRefGoogle Scholar
  31. 31.
    Haslett, J., Raftery, A.E.: Space-time modelling with long-memory dependence: assessing ireland’s0 wind power resource. J. Appl. Stat. 38, 1–50 (1989)CrossRefGoogle Scholar
  32. 32.
    Hassler, U.: Regression of spectral estimators with fractionally integrated time series. J. Time Ser. Anal. 14(4), 369–380 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D: Nonlinear Phenom. 31(2), 277–283 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hurst, H.E., Black, R.P., Simaika, Y.M.: Long-Term Storage: An Experimental Study. Constable and Co Limited, London (1965)Google Scholar
  35. 35.
    Ihlen, E.A.F.: Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 3(141), 1–18 (2012)Google Scholar
  36. 36.
    Jaffard, S.: Multifractal formalism for functions. SIAM J. Math. Anal. 28, 944–970 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Jaffard, S., Lashermes, B., Abry, P.: Wavelet leaders in multifractal analysis. In: Qian, T., Vai, M.I., Xu, Y. (Eds.), pp. 201–246. Wavelet analysis and applications, Birkhäuser Verlag (2007)Google Scholar
  38. 38.
    Jeong, H.D.J., McNiclke, D., Pawlikowski, K.: Hurst parameter estimation techniques: a critical review. In: 38th Annual ORSNZ Conference (2001)Google Scholar
  39. 39.
    Jia, Y., Zhou, J., Li, D.: Performance assessment of cascade control loops with non-Gaussian disturbances. In: 2018 Chinese Automation Congress, pp. 2451–2456 (2018)Google Scholar
  40. 40.
    Kantelhardt, J.W., Zschiegner, S.A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)zbMATHCrossRefGoogle Scholar
  41. 41.
    Kaplan, L.M., Jay Kuo, C.C.: Fractal estimaton from noisy data via discrete fractional gaussian noise (DFGN) and the Haar basis. IEEE Trans. Signal Proccess. 41(12) (1993)zbMATHCrossRefGoogle Scholar
  42. 42.
    Karagiannis, T., Faloutsos, M., Riedi, R.H.: Long-range dependence: now you see it, now you don’t! In: IEEE Global Telecommunications Conference GLOBECOM ’02 3 (2002)Google Scholar
  43. 43.
    Kavasseri, R.G., Nagarajan, R.: Evidence of crossover phenomena in wind-speed data. IEEE Trans. Circuits Syst. I: Regul. Papers 51(11), 2255–2262 (2004)CrossRefGoogle Scholar
  44. 44.
    Kavasseri, R.G., Nagarajan, R.: A multifractal description of wind speed records. Chaos Solitons Fractals 24(1), 165–173 (2005)zbMATHCrossRefGoogle Scholar
  45. 45.
    Kenkel, N.C., Walker, D.J.: Fractals in the biological sciences. COENOSES 11, 77–100 (1996)Google Scholar
  46. 46.
    Kettani, H., Gubner, J.A.: A novel approach to the estimation of the long-range dependence parameter. IEEE Trans. Circuits Syst. 53(6), 463–467 (2006)CrossRefGoogle Scholar
  47. 47.
    Kirichenko, L., Radivilova, T., Deineko, Z.: Comparative analysis for estimating of the hurst exponent for stationary and nonstationary time series. J. Int. Inf. Technol. Knowl. 5, 371–387 (2011)Google Scholar
  48. 48.
    Koutsoyiannis, D.: Climate change, the hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003)CrossRefGoogle Scholar
  49. 49.
    Li, L., Li, Z., Zhang, Y., Chen, Y.: A mixed-fractal traffic flow model whose hurst exponent appears crossover. In: 2012 Fifth International Joint Conference on Computational Sciences and Optimization, pp. 443–447. IEEE (2012)Google Scholar
  50. 50.
    Li, M., Zhao, W., Cattani, C.: Delay bound: fractal traffic passes through network servers. Math. Problems Eng. (2013)Google Scholar
  51. 51.
    Li, Q., Mills, D.L.: Investigating the scaling behavior, crossover and anti-persistence of internet packet delay dynamics. In: Proceedings of the Seamless Interconnection for Universal Services Global Telecommunications Conference GLOBECOM’99 3 (1999)Google Scholar
  52. 52.
    Liu, K., Chen, Y.Q., Domański, P.D., Zhang, X.: A novel method for control performance assessment with fractional order signal processing and its application to semiconductor manufacturing. Algorithms 11(7), 90 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Liu, K., Chen, Y.Q., Domański, P.D.: Control performance assessment of the disturbance with fractional order dynamics. In: Preprints of the First International Nonlinear Dynamics Conference NODYCON 2019, Rome, Italy (2019)Google Scholar
  54. 54.
    Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)CrossRefGoogle Scholar
  55. 55.
    L’vov, V.S., Pomyalov, A., Procaccia, I.: Outliers, extreme events, and multiscaling. Phys. Rev. E 63(056), 118 (2001)Google Scholar
  56. 56.
    Majumder, B., Das, S., Pan, I., Saha, S., Das, S., Gupta, A.: Estimation, analysis and smoothing of self-similar network induced delays in feedback control of nuclear reactors. In: International Conference on Process Automation, Control and Computing (2011)Google Scholar
  57. 57.
    Mandelbrot, B.B.: Possible refinements of the lognormal hypothesis concerning the distribution of energy dissipation in intermitent turbulence. In: Rosenblatt, M., Van Atta, C. (Eds.) Statistical Models and Turbulence, Springer, New York (1972)CrossRefGoogle Scholar
  58. 58.
    Mandelbrot, B.B.: Les objets fractals: forme, hasard, et dimension. Flammarion (1975)Google Scholar
  59. 59.
    Mandelbrot, B.B., Hudson, R.L.: The Misbehavior of Markets: A Fractal View of Financial Turbulence. Basic Books, New York (2004)Google Scholar
  60. 60.
    Mandelbrot, B.B., Fisher, A., Calvet, L.: A multifractal model of asset returns. Technical Report 1164, Cowles Foundation Discussion Paper (1997)Google Scholar
  61. 61.
    Meng, Q.W., Fang, F., Liu, J.Z.: Minimum-information-entropy-based control performance assessment. Entropy 15(3), 943–959 (2013)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Movahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S., Tabar, M.R.R.: Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech.: Theory Exp. 2006(02), 02,003 (2006)zbMATHCrossRefGoogle Scholar
  63. 63.
    Muzy, J.F., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67(25), 3515–3518 (1991)CrossRefGoogle Scholar
  64. 64.
    Oh, G., Eom, C., Havlin, S., Jung, W.S., Wang, F., Stanley, H.E., Kim, S.: A multifractal analysis of asian foreign exchange markets. Eur. Phys. J. B 85(6), 1–6 (2012)CrossRefGoogle Scholar
  65. 65.
    Oświecimka, P., Kwapień, J., Drozdz, S., Rak, R.: Investigating multifractality of stock market fluctuations using wavelet and detrending fluctuation methods. Acta Phys. Polonica B 36(8), 2447 (2005)Google Scholar
  66. 66.
    Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685–1689 (1994)CrossRefGoogle Scholar
  67. 67.
    Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, NY) 5(1), 82–87 (1995)CrossRefGoogle Scholar
  68. 68.
    Perkiömäki, J.S., Mäkikallio, T.H., Huikuri, H.V.: Fractal and complexity measures of heart rate variability. Clin. Exp. Hypertens. 27(2–3), 149–158 (2005)CrossRefGoogle Scholar
  69. 69.
    Peters, E.E.: Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, 2nd edn. John Wiley & Sons Inc (1996)Google Scholar
  70. 70.
    Pillay, N., Govender, P.: A data driven approach to performance assessment of PID controllers for setpoint tracking. Procedia Eng. 69, 1130–1137 (2014)CrossRefGoogle Scholar
  71. 71.
    Russel, D., Hanson, J., Ott, E.: Dimension of strange attractors. Phys. Rev. Lett. 45(14), 1175–1178 (1980)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Schmitt, D.T., Ivanov, P.C.: Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293(5), R1923–R1937 (2007)CrossRefGoogle Scholar
  73. 73.
    Schröder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W. H. Freeman and Company, New York, NY (1991)Google Scholar
  74. 74.
    Schumann, A.Y., Kantelhardt, J.W.: Multifractal moving average analysis and test of multifractal model with tuned correlations. Phys. A: Stat. Mech. Appl. 390(14), 2637–2654 (2011)CrossRefGoogle Scholar
  75. 75.
    Serrano, E., Figliola, A.: Wavelet leaders: a new method to estimate the multifractal singularity spectra. Phys. A: Stat. Mech. Appl. 388(14), 2793–2805 (2009)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Sornette, D.: Dragon-kings, black swans and the prediction of crises. Int. J. Terraspace Sci. Eng. 2(1), 1–18 (2009)Google Scholar
  77. 77.
    Spinner, T.: Performance assessment of multivariate control systems. Ph.D. thesis, Texas Tech University (2014)Google Scholar
  78. 78.
    Spinner, T., Srinivasan, B., Rengaswamy, R.: Data-based automated diagnosis and iterative retuning of proportional-integral (PI) controllers. Control Eng. Pract. 29, 23–41 (2014)CrossRefGoogle Scholar
  79. 79.
    Srinivasan, B., Spinner, T., Rengaswamy, R.: Control loop performance assessment using detrended fluctuation analysis (DFA). Automatica 48(7), 1359–1363 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Taleb, N.N.: Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets. Penguin Books, New York (2001)Google Scholar
  81. 81.
    Taqqu, M.S., Teverovsky, V.: On estimating the intensity of long-range dependence in finite and infinite variance time series. In: A Practical Guide To Heavy Tails: Statistical Techniques and Applications, pp. 177–217 (1996)Google Scholar
  82. 82.
    Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: an empirical study. Fractals 03(04), 785–798 (1995)zbMATHCrossRefGoogle Scholar
  83. 83.
    Teverovsky, V., Taqqu, M.S.: Testing for long-range dependence in the presence of shifting means or a slowly declining trend using a variance type estimator. J. Time Ser. Anal. 18, 279–304 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Tosatti, E., Pietrelli, L.: Fractals in physics. In: Proceedings of the Sixth Trieste International Symposium on Fractals in Physics, Italy, North Holland (1985)Google Scholar
  85. 85.
    Turcotte, D.L.: Fractals in Geology and Geophysics. In: Fractals in Geophysics, pp. 171–196. Springer (1989)Google Scholar
  86. 86.
    Weron, R.: Estimating long range dependence: finite sample properties and confidence intervals. Physica A 312, 285–299 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Wu, Y., Li, J.: Hurst parameter estimation method based on haar wavelet and maximum likelihood estimation. J. Huazhong Normal Univ. 52(6), 763–775 (2013)MathSciNetGoogle Scholar
  88. 88.
    You, H., Zhou, J., Zhu, H., Li, D.: Performance assessment based on minimum entropy of feedback control loops. In: 2017 6th Data Driven Control and Learning Systems (DDCLS), pp. 593–598 (2017)Google Scholar
  89. 89.
    Yue, H., Wang, H.: Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems. IEEE Trans. Autom. Control 48(1), 118–122 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Zhang, J., Jiang, M., Chen, J.: Minimum entropy-based performance assessment of feedback control loops subjected to non-Gaussian disturbances. J. Process Control 24(11), 1660–1670 (2015a)CrossRefGoogle Scholar
  91. 91.
    Zhang, J., Zhang, L., Chen, J., Xu, J., Li, K.: Performance assessment of cascade control loops with non-Gaussian disturbances using entropy information. Chem. Eng. Res. Design 104, 68–80 (2015b)CrossRefGoogle Scholar
  92. 92.
    Zhang, Q., Wang, Y., Lee, F., Chen, Q., Sun, Z.: Improved Renyi entropy benchmark for performance assessment of common cascade control system. IEEE Access 7, 6796–6803 (2019a)CrossRefGoogle Scholar
  93. 93.
    Zhang, Q., Wang, Y., Lee, F., Zhang, W., Chen, Q.: Performance assessment of cascade control system with non-Gaussian disturbance based on minimum entropy. Symmetry 11(3), 379 (2019b)CrossRefGoogle Scholar
  94. 94.
    Zhou, J., Jia, Y., Jiang, H., Fan, S.: Non-Gaussian systems control performance assessment based on rational entropy. Entropy 20(5), 331 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations