Advertisement

Brain and Art pp 121-138 | Cite as

A Neuroscience of Dance: Potential for Therapeusis in Neurology

  • Gerry LeismanEmail author
  • Vered Aviv
Chapter

Abstract

Dance possesses favorable effects on the brain and its ability to form connections as well as in its ability to stimulate substances that support neuroplasticity used to treat individuals with many forms of neurodegenerative conditions such as Parkinson’s disease and other neurodegenerative conditions by influencing the integratory function of movement and cognition. Elements of both discrete and rhythmic movements are present in dance, itself a gestural system. Activation patterns are largely consistent with subcortical system activation involved in the timing and coordination of discontinuous movements, and specific cortical systems are activated to support the control of the continuous movements. We conclude that the essential functions fundamental to the dance include the control of equilibrium, posture, and sway which are sensitive to training effects, and that, therefore, dance training has the potential to stabilize and align dancers’ performance via these functions. The roles of individual sensory modalities in multimodal integration, especially relative influences of vision and somatosensation, deserve further study. We conclude that there is potential therapeutic benefit for those with developmental delays, developmental coordination disorders, individuals post-stroke, and those suffering from a plethora of neurodegenerative conditions.

References

  1. 1.
    Leisman G. Auditory, visual and spatial aesthetic and artistic training facilitates brain plasticity: the arts as a vehicle for rehabilitation. Funct Neurol Rehabil Ergon. 2012;2(3):251–66.Google Scholar
  2. 2.
    Leisman G. In: Leisman G, Merrick J, editors. Neuroplasticity in learning and rehabilitation. Nova series in functional neurology, vol. 2. Hauppauge, NY: Nova Scientific Publishers; 2016.Google Scholar
  3. 3.
    Brown S, Parsons LM. The neuroscience of dance. Sci Am. 2008;299(1):78–83.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cross ES, Hamilton AFDC, Grafton ST. Building a motor simulation de novo: observation of dance by dancers. Neuroimage. 2006;31(3):1257–67.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Israely S, Leisman G, Carmeli E. Neuromuscular synergies in motor control in normal and post-stroke individuals. Rev Neurosci. 2018;29(6):593–612.  https://doi.org/10.1515/revneuro-2017-0058.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Melillo R, Leisman G. Neurobehavioral disorders of childhood: an evolutionary perspective. New York, NY: Springer; 2010.CrossRefGoogle Scholar
  7. 7.
    Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009;159(3):1044–54.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mualem R, Leisman G, Zbedat Y, Ganem S, Mualem O, Amaria M, Kozle A, Khayat-Moughrabi S, Ornai A. The effect of movement on cognitive performance. Front Public Health. 2018;6:100.  https://doi.org/10.3389/fpubh.2018.00100.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ehrsson HH, Geyer S, Naito E. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol. 2003;90(5):3304–16.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jäncke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res. 2000;10(1-2):51–66.CrossRefGoogle Scholar
  11. 11.
    Penhune VB, Zatorre RJ, Evans AC. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci. 1998;10(6):752–65.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sahyoun C, Floyer-Lea A, Johansen-Berg H, Mathews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation, and execution of foot movements. Neuroimage. 2004;21:568–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Farnell B. Moving bodies, acting selves. Ann Rev Anthropol. 1999;28:341–73.CrossRefGoogle Scholar
  14. 14.
    Sachs C. World history of the dance. New York, NY: Norton; 1937. Berlin, 1933; English translation.Google Scholar
  15. 15.
    Appenzeller T. Evolution or revolution. Science. 1998;282:1451–4.CrossRefGoogle Scholar
  16. 16.
    Bramble DM, Lieberman DE. Endurance running and the evolution of homo. Nature. 2004;432:345–52.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ward CV. Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Am J Phys Anthropol. 2002;119(S35):185–215.CrossRefGoogle Scholar
  18. 18.
    Longstaff JS. Re-evaluating Rudolf Laban’s choreutics. Percept Mot Skills. 2000;91:191–210.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Haggard P, Wolpert DM. Disorders of body scheme. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda RC, editors. Higher order motor disorders. Oxford: Oxford University Press; 2005. p. 261–72.Google Scholar
  20. 20.
    Hutchinson-Guest A. Labanotation: the system of analyzing and recording movement. Philadelphia, PA: Taylor and Francis; 1973.Google Scholar
  21. 21.
    Brown S, Martinez MJ, Parsons LM. The neural basis of human dance. Cereb Cortex. 2006;16(8):1157–67.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schaal S, Sternad D, Osu R, Kawato M. Rhythmic arm movement is not discrete. Nat Neurosci. 2004;7:1137–44.Google Scholar
  23. 23.
    Miall RC, Ivry R. Moving to a different beat. Nat Neurosci. 2004;7:1025–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gazzaniga MS. The mind’s past. Berkeley: Univ of California Press; 1998.Google Scholar
  25. 25.
    Leisman G, Melillo R. The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci. 2013;24(1):9–25.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the basal ganglia in development. Front Syst Neurosci. 2014;8:16.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J. Brain areas involved in interlimb coordination: a distributed network. Neuroimage. 2001;14:947–58.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett. 1997;228:183–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Schmahmann JD, Doyon JA, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego, CA: Academic Press; 2000.Google Scholar
  30. 30.
    Parsons LM. Exploring the functional neuroanatomy of music performance, perception, and comprehension. In: Peretz I, Zatorre RJ, editors. The cognitive neuroscience of music. New York, NY: Oxford University Press; 2003. p. 247–68.CrossRefGoogle Scholar
  31. 31.
    Petacchi A, Laird AR, Fox PT, Bower JM. Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp. 2005;25:118–28.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bower JM, Parsons LM. Rethinking the lesser brain. Sci Am. 2003;289:50–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga MS, editor. The new cognitive neurosciences. 2nd ed. Cambridge, MA: MIT Press; 2000. p. 999–1011.Google Scholar
  34. 34.
    Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.CrossRefPubMedGoogle Scholar
  35. 35.
    Ivry R. Cerebellar timing systems. In: Schmahmann JD, editor. The cerebellum and cognition. New York, NY: Academic Press; 1997. p. 556–73.Google Scholar
  36. 36.
    Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Leisman G, Melillo R, Mualem R, Machado C. The effect of music training and production on functional brain organization and cerebral asymmetry. In: Kravchuk T, Groysman A, Soddu C, Colabella E, Leisman G, editors. Art, science and technology, vol. 2012. Milano: Domus Argenia; 2012. p. 133–9.Google Scholar
  38. 38.
    Parsons LM, Sergent J, Hodges DA, Fox PT. The brain basis of piano Melliloperformance. Neuropsychologia. 2005;43(2):199–215.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE. Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur J Neurosci. 2000;12(9):3385–98.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns GS. Neural correlates of the complexity of rhythmic finger tapping. Neuroimage. 2003;20(2):918–26.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14:1186–92.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Luft AR, Smith GV, Forrester L, Whitall J, Macko RF, Hauser T-K, Goldberg AP, Hanley DF. Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp. 2002;17:131–40.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chaminade T, Meltzoff AN, Decety J. An fMRI study of imitation: action representation and body schema. Neuropsychologia. 2005;43:115–27.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Graziano MS, Taylor CS, Moore T, Cooke DF. The cortical control of movement revisited. Neuron. 2002;36:349–62.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kajal DS, Braun C, Mellinger J, Sacchet MD, Ruiz S, Fetz E, Sitaram R. Learned control of inter‐hemispheric connectivity: effects on bimanual motor performance. Hum Brain Mapp. 2017;38(9):4353–69.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Manca A, Hortobagyi T, Rothwell JC, et al. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J Appl Physiol. 2018;124:1502.  https://doi.org/10.1152/japplphysiol.01016.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kang N, Cauraugh JH. Bilateral synergy as an index of force coordination in chronic stroke. Exp Brain Res. 2017;235(5):1501–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Karpati FJ, Giacosa C, Foster NE, Penhune VB, Hyde KL. Dance and music share gray matter structural correlates. Brain Res. 2017;1657:62–73.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Grafton ST, Arbib MA, Fadiga L, Rizzolatti G. Localization of grasp representation in human by PET. 2. Observation versus imagination. Exp Brain Res. 1996;112:103–11.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Heiser M, Iacoboni M, Maeda F, Marcus J, Mazziotta JC. The essential role of Broca’s area in imitation. Eur J Neurosci. 2003;17:1123–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kilintari M, Papanicolaou AC. Imaging the networks of motor cognition. The Oxford handbook of functional brain imaging in neuropsychology and cognitive neurosciences. New York, NY: Oxford University Press; 2017. p. 319.Google Scholar
  52. 52.
    Parsons LM, Fox PT, Downs JH, Glass T, Hirsch T, Martin C, Jerabek P, Lancaster JL. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature. 1995;375:54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Calvo-Merino B, Glaser DE, Grezes J, Passingham PE, Haggard P. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex. 2005;15:1243–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Bearss KA, DeSouza JF. Plasticity in damaged multisensory networks. In: Synaptic plasticity. Rijeka: InTech; 2017. p. 111–30.Google Scholar
  55. 55.
    Chauvignú LA, Belyk M, Brown S. Following during physically-coupled joint action engages motion area MT+/V5. J Integr Neurosci. 2017;16(3):307–18.CrossRefGoogle Scholar
  56. 56.
    Colby CL, Goldberg ME. Space and attention in parietal cortex. Annu Rev Neurosci. 1999;22:319–49.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hwang EJ, Dahlen JE, Mukundan M, Komiyama T. History-based action selection bias in posterior parietal cortex. Nat Ccommun. 2017;8(1):1242.CrossRefGoogle Scholar
  58. 58.
    Parsons LM. Superior parietal cortices and varieties of mental rotation. Trends Cogn Sci. 2003;17:515–7.CrossRefGoogle Scholar
  59. 59.
    Berlucchi G, Aglioti S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 1997;20:560–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Halligan PW, Fink GR, Marshall JC, Vallar G. Spatial cognition: evidence from visual neglect. Trends Cogn Sci. 2003;7:125–33.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wood DK, Chouinard PA, Major AJ, Goodale MA. Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex. Cortex. 2017;97:202–20.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Burzynska AZ, Finc K, Taylor BK, Knecht AM, Kramer AF. The dancing brain: structural and functional signatures of expert dance training. Front Hum Neurosci. 2017;11:566.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Colby CL, Olson CR. Spatial cognition. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ, editors. Fundamental neuroscience. 2nd ed. San Diego, CA: Academic Press; 2003. p. 1229–47.Google Scholar
  64. 64.
    Elliott C. The brain is primarily a visual-spatial processing device: altering visual-spatial cognitive processing via retinal stimulation can treat movement disorders. J Funct Neurol Rehabil Ergon. 2017;7(3):24–38.Google Scholar
  65. 65.
    Parsons LM. Imagined spatial transformation of one’s hands and feet. Cogn Psychol. 1987;19:178–241.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Garraux G, McKinney C, Wu T, Kansuku K, Nolte G, Hallett M. Shared brain areas but not functional connections controlling movement timing and order. J Neurosci. 2005;25:5290–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kelly AMC, Garavan H. Human functional neuroimaging of brain changes associated with practice. Cereb Cortex. 2005;15:1089–102.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Daprati E, Iosa M, Haggard P. A dance to the music of time: aesthetically-relevant changes in body posture in performing art. PLoS One. 2009;4(3):e5023.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rein S, Fabian T, Zwipp H, Rammelt S, Weindel S. Postural control and functional ankle stability in professional and amateur dancers. Clin Neurophysiol. 2011;122(8):1602–10.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Crotts D, Thompson B, Nahom M, Ryan S, Newton RA. Balance abilities of professional dancers on select balance tests. J Orthoped Sports Phys Ther. 1996;23(1):12–7.CrossRefGoogle Scholar
  71. 71.
    Chatfield SJ, Krasnow DH, Herman A, Blessing G. A descriptive analysis of kinematic and electromyographic relationships of the core during forward stepping in beginning and expert dancers. J Dance Med Sci. 2007;11(3):9.Google Scholar
  72. 72.
    Golomer E, Dupui P, Monod H. Sex-linked differences in equilibrium reactions among adolescents performing complex sensorimotor tasks. J Physiol Paris. 1997;91(2):49–55.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Golomer E, Dupui P, Monod H. The effects of maturation on self induced dynamic body sway frequencies of girls performing acrobatics or classical dance. Eur J Appl Physiol Occup Physiol. 1997;76(2):140–4.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Golomer E, Cremieux J, Dupui P, Isableu B, Ohlmann T. Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neurosci Lett. 1999;267(3):189–92.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Bruyneel AV, Mesure S, Paré JC, Bertrand M. Organization of postural equilibrium in several planes in ballet dancers. Neurosci Lett. 2010;485(3):228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ricotti L, Ravaschio A. Break dance significantly increases static balance in 9 years-old soccer players. Gait Posture. 2011;33(3):462–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jola C, Pollick FE, Grosbras MH. Arousal decrease in sleeping beauty: audiences’ neurophysiological correlates to watching a narrative dance performance of two-and-a-half hours. Dance Res. 2011;29(supplement):378–403.CrossRefGoogle Scholar
  78. 78.
    Boucher M. A study on proprioception and peripheral vision in synesthesia and immersion. Leonardo. 2017;50(2):144–51.CrossRefGoogle Scholar
  79. 79.
    Golomer E, Dupui P. Spectral analysis of adult dancers’ sways: sex and interaction vision-proprioception. Int J Neurosci. 2000;105(1-4):15–26.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ramsay JR, Riddoch MJ. Position-matching in the upper limb: professional ballet dancers perform with outstanding accuracy. Clin Rehabil. 2001;15(3):324–30.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Golomer E, Dupui P, Sereni P, Monod H. The contribution of vision in dynamic spontaneous sways of male classical dancers according to student or professional level. J Physiol Paris. 1999;93(3):233–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Hugel F, Cadopi M, Kohler F, Perrin P. Postural control of ballet dancers: a specific use of visual input for artistic purposes. Int J Sports Med. 1999;20(2):86–92.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ponzo S, Kirsch LP, Fotopoulou A, Jenkinson PM. Balancing body ownership: visual capture of proprioception and affectivity during vestibular stimulation. Neuropsychologia. 2018;11:311–21.CrossRefGoogle Scholar
  84. 84.
    Golomer E, Mbongo F, Toussaint Y, Cadiou M, Israel I. Right hemisphere in visual regulation of complex equilibrium: the female ballet dancers’ experience. Neurol Res. 2010;32(4):409–15.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Thullier F, Moufti H. Multi-joint coordination in ballet dancers. Neurosci Lett. 2004;369(1):80–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wilson M, Lim B, Kwon Y. 3-Dimensional kinematic analysis of grand rond de jambe en l’air: skilled versus novice dancers. J Dance Med Sci. 2004;8:108–15.Google Scholar
  87. 87.
    Krasnow D, Wilmerding MV, Stecyk S, Wyon M, Koutedakis Y. Biomechanical research in dance: a literature review. Med Probl Perform Art. 2011;26(1):3–23.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Leonard P, Foxcroft C, Kroukamp T. Are visual-perceptual and visual-motor skills separate abilities? Percept Mot Skills. 1988;67(2):423–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Brass M, Heyes C. Imitation: is cognitive neuroscience solving the correspondence problem? Trends Cogn Sci. 2005;9(10):489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Karpati FJ, Giacosa C, Foster NE, Penhune VB, Hyde KL. Dance and the brain: a review. Ann N Y Acad Sci. 2015;1337(1):140–6.CrossRefGoogle Scholar
  92. 92.
    Krüger B, Bischoff M, Blecker C, Langhanns C, Kindermann S, Sauerbier I, Pilgramm S. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation. Neuroimage. 2014;100:39–50.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Freund HJ. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13(2):400–4.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ, Rizzolatti G. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron. 2004;42(2):323–34.CrossRefPubMedGoogle Scholar
  95. 95.
    Tachibana A, Noah JA, Bronner S, Ono Y, Onozuka M. Parietal and temporal activity during a multimodal dance video game: an fNIRS study. Neurosci Lett. 2011;503(2):125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Warburton EC. The dance on paper: effect of notation-use on learning and development in dance. J Anthropol Study Hum Mov. 2005;13(3):121.Google Scholar
  97. 97.
    Al-Dor N. Motor coordination for all: a learning process based on Eshkol-Wachman movement notation (EWMN). International yearbook for research in arts education 3/2015: the wisdom of the many-key issues in arts education. Münster: Waxmann Verlag GmbH; 2015. p. 129.Google Scholar
  98. 98.
    Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science. 1980;210(4466):207–10.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Leonard CT. The neuroscience of human movement. Mosby: St. Louis, MO; 1998.Google Scholar
  100. 100.
    Willingham DB, Salidis J, Gabrieli JD. Direct comparison of neural systems mediating conscious and unconscious skill learning. J Neurophysiol. 2002;88(3):1451–60.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Brown RM, Robertson EM. Inducing motor skill improvements with a declarative task. Nat Neurosci. 2007;10(2):148.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Squire LR. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci. 1992;4(3):232–43.CrossRefPubMedGoogle Scholar
  103. 103.
    Kantak SS, Winstein CJ. Learning–performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res. 2012;228(1):219–31.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Hagendoorn I. Cognitive dance improvisation: how study of the motor system can inspire dance (and vice versa). Leonardo. 2003;36(3):221–8.CrossRefGoogle Scholar
  105. 105.
    Torrents C, Castañer M, Dinušová M, Anguera MT. Discovering new ways of moving: observational analysis of motor creativity while dancing contact improvisation and the influence of the partner. J Creat Behav. 2010;44(1):53–69.CrossRefGoogle Scholar
  106. 106.
    Fink A, Graif B, Neubauer AC. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage. 2009;46(3):854–62.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, Buschke H. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–16.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hanna JL. Dancing to resist, reduce, and escape stress. In: The Oxford handbook of dance and wellbeing. Oxford: Oxford University Press; 2017. p. 99.Google Scholar
  109. 109.
    Christensen JF, Cela‐Conde CJ, Gomila A. Not all about sex: neural and biobehavioral functions of human dance. Ann N Y Acad Sci. 2017;1400(1):8–32.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Parkinson’s Disease Foundation. Statistics. New York, NY: Parkinson’s Disease Foundation; 2018. Accessed on 1 Nov 2018.Google Scholar
  111. 111.
    Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 1996;55(3):259–72.CrossRefGoogle Scholar
  112. 112.
    Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci. 2007;26(8):2369–75.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sohliya L, Thomas R. Rhythmic auditory stimulation for gait training in persons with unilateral transtibial amputation: a randomized-controlled trial. Ann Phys Rehabil Med. 2018;61:e377.CrossRefGoogle Scholar
  114. 114.
    Thaut MH, Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Mus Percep. 2010;27(4):263–9.CrossRefGoogle Scholar
  115. 115.
    Sandrini G, Tassorelli C, Berra E, De Icco R. Cues and body-weight-supported (BWS) gait training in Parkinson’s disease. In: Schauer T, Seele T, editors. Advanced technologies for the rehabilitation of gait and balance disorders. New York, NY: Springer; 2018. p. 357–66.CrossRefGoogle Scholar
  116. 116.
    Wayne PM, Gagnon MM, Macklin EA, Travison TG, Manor B, Lachman M, Lipsitz LA. The mind body-wellness in supportive housing (Mi-WiSH) study: design and rationale of a cluster randomized controlled trial of Tai Chi in senior housing. Contemp Clin Trials. 2017;60:96–104.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Li F, Harmer P, Fitzgerald K, Eckstrom E, Stock R, Galver J, Maddalozzo G, Batya SS. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med. 2012;366(6):511–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rehfeld K, Lüders A, Hökelmann A, Lessmann V, Kaufmann J, Brigadski T, Müller P, Müller NG. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS One. 2018;13(7):e0196636.  https://doi.org/10.1371/journal.pone.019663. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Kim SH, Kim M, Ahn YB, Lim HK, Kang SG, Cho JH, et al. Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study. J Sports Sci Med. 2011;10(4):671.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Komulainen P, Lakka TA, Kivipelto M, Hassinen M, Helkala EL, Haapala I, Nissinen A, Rauramaa R. Metabolic syndrome and cognitive function: a population based follow-up study in elderly women. Dement Geriatr Cogn Disord. 2007;23:29–34.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Solfrizzi V, Scafato E, Capurso C, D’Introno A, Colacicco AM, Frisardi V, Vendemiale G, Baldereschi M, Crepaldi G, Di Carlo A, Galluzzo L, Gandin C, Inzitari D, Maggi S, Capurso A, Panza F. Metabolic syndrome, mild cognitive impairment, and progression to dementia. The Italian longitudinal study on aging. Neurobiol Aging. 2009;32:1932–41.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, Tylavsky FA, Newman AB. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292:2237–42.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Hackney ME, Earhart GM. Effects of dance on gait and balance in Parkinson’s disease: a comparison of partnered and nonpartnered dance movement. Neurorehabil Neural Repair. 2010;24(4):384–92.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    de Natale ER, Paulus KS, Aiello E, Sanna B, Manca A, Sotgiu G, et al. Dance therapy improves motor and cognitive functions in patients with Parkinson’s disease. NeuroRehabilitation. 2017;40(1):141–4.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Al-Qudah ZA, Yacoub HA, Souayah N. Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update. J Vasc Interv Neurol. 2015;8(4):43.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Sampaio LMM, Subramaniam S, Arena R, Bhatt T. Does virtual reality-based kinect dance training paradigm improve autonomic nervous system modulation in individuals with chronic stroke? J Casc Interv Neurol. 2016;9(2):21.Google Scholar
  127. 127.
    Patterson KK, Wong JS, Prout EC, Brooks D. Dance for the rehabilitation of balance and gait in adults with neurological conditions other than Parkinson’s disease: a systematic review. Heliyon. 2018;4(3):e00584.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Shanahan J, Morris ME, Bhriain ON, Saunders J, Clifford AM. Dance for people with Parkinson disease: what is the evidence telling us? Arch Phys Med Rehabil. 2015;96(1):141–53.  https://doi.org/10.1016/j.apmr.2014.08.017.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Health SciencesUniversity of HaifaHaifaIsrael
  2. 2.National Institute for Brain and Rehabilitation SciencesNazarethIsrael
  3. 3.Faculty ‘Manuel Fajardo’University of the Medical SciencesHavanaCuba
  4. 4.The Jerusalem Academy of Music and DanceJerusalemIsrael

Personalised recommendations