Advertisement

18F-Fluoride Imaging: Monitoring Therapy

  • Elba Etchebehere
  • Kalevi Kairemo
Chapter
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)

Abstract

Novel oncologic therapeutic agents, whether chemotherapy, hormone therapy, immunotherapy, or radiotracers such as 223Ra and 177Lu-PSMA are expensive and diagnostic test able to predict and monitor response to treatment, avoid overtreatment and unnecessary costs, will improve patient management and guide individualized therapy. In this chapter, we will discuss 18F-Fluoride PET/CT’s capability to monitor therapy in three different time points: prior to initiation of therapy (baseline scans), during treatment (interim scans), and after therapy (follow-up scans).

References

  1. 1.
    Lin C, Bradshaw T, Perk T, Harmon S, Eickhoff J, Jallow N, et al. Repeatability of quantitative 18F-NaF PET: a multicenter study. J Nucl Med. 2016;57:1872–9.CrossRefGoogle Scholar
  2. 2.
    Bortot DC, Amorim BJ, Oki GC, Gapski SB, Santos AO, Lima MC, et al. 18F-fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:1730–6.CrossRefGoogle Scholar
  3. 3.
    Shen C, Qiu Z, Han T, Luo Q. Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases. A meta-analysis. Clin Nucl Med. 2015;40:103–10.CrossRefGoogle Scholar
  4. 4.
    Minamimoto R, Loening A, Jamali M, Barkhodari A, Mosci C, Jackson T, et al. Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med. 2015;56:1862–8.CrossRefGoogle Scholar
  5. 5.
    Abikhzer G, Srour S, Fried G, Drumea K, Kozlener E, Frenkel A, et al. Prospective comparison of whole-body bone SPECT and sodium 18F-fluoride PET in the detection of bone metastases from breast cancer. Nucl Med Commun. 2016;37:1160–8.CrossRefGoogle Scholar
  6. 6.
    Broos W, van der Zant FM, Wondergem M, Knol RJJ. Accuracy of 18F-NaF PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma. Nucl Med Commun. 2018;39:325–33.CrossRefGoogle Scholar
  7. 7.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMedGoogle Scholar
  8. 8.
    Kruger S, Buck AK, Mottaghy FM, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1807–12.CrossRefGoogle Scholar
  9. 9.
    Rao L, Zong Z, Chen Z, Wang X, Shi X, Yi C, et al. 18F-labeled NaF PET/CT in detection of bone metastases in patients with preoperative lung cancer. Medicine. 2016;95:e3490.CrossRefGoogle Scholar
  10. 10.
    Sharma P, Karunanithi S, Chakraborty PS, Kumar R, Seth A, Julka PK, Bal C, Kumar R. 18F-fluoride PET/CT for detection of bone metastasis in patients with renal cell carcinoma: a pilot study. Nucl Med Commun. 2014;35:1247–53.CrossRefGoogle Scholar
  11. 11.
    Gerety EL, Lawrence EM, Wason J, Yan H, Hilborne S, Buscombe J, et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol. 2015;26:2113–8.CrossRefGoogle Scholar
  12. 12.
    Lopez R, Gantet P, Salabert AS, Julian A, Hitzel A, Herbault-Barres B, Fontan C, Alshehri S, Payoux P. Prospective comparison of 18F-NaF PET/CT versus 18F-FDG PET/CT imaging in mandibular extension of head and neck squamous cell carcinoma with dedicated analysis software and validation with surgical specimen. A preliminary study. J Craniomaxillofac Surg. 2017;45:1486–92.CrossRefGoogle Scholar
  13. 13.
    Hillner BE, Siegel BA, Hanna L, Duan F, Quinn B, Shields AF. 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the national oncologic PET registry. J Nucl Med. 2015;56:222–8.CrossRefGoogle Scholar
  14. 14.
    Etchebehere EC, Araujo JC, Fox PS, Swanston NM, Macapinlac HA, Rohren EM. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18F-fluoride PET/CT in predicting overall survival. J Nucl Med. 2015;56:1177–84.CrossRefGoogle Scholar
  15. 15.
    Apolo AB, Lindenberg L, Shih JH, Mena E, Kim JW, Park JC, et al. Prospective study evaluating Na18F PET/CT in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57:886–92.CrossRefGoogle Scholar
  16. 16.
    Rohren EM, Etchebehere EC, Araujo JC, Hobbs BP, Swanston NM, Everding M, et al. Determination of skeletal tumor burden on 18F-fluoride PET/CT. J Nucl Med. 2015;56:1507–12.CrossRefGoogle Scholar
  17. 17.
    Lindgren B, Sadik M, Kaboteh R, Hasani N, Enqvist O, Svärm L, Kahl F, Simonsen J, Poulsen M, Ohlsson M, Høilund-Carlsen P, Edenbrandt L, Trägårdh E. 3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer. EJNMMI Res. 2017;7:15.CrossRefGoogle Scholar
  18. 18.
    Lin C, Bradshaw T, Perk T, Harmon S, Eickhoff J, Jallow N, Choyke PL, Dahut WL, Larson S, Humm JL, Perlman S, Apolo AB, Morris MJ, Liu G, Jeraj R. Repeatability of quantitative 18F-NaF PET: a multicenter study. J Nucl Med. 2016;57:1872–9.CrossRefGoogle Scholar
  19. 19.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefGoogle Scholar
  20. 20.
    Letellier A, Johnson AC, Kit NH, Savigny J, Batalla A, Parienti J, Aide N. Uptake of radium-223 dichloride and early [18F] NaF PET response are driven by baseline [18F]NaF parameters: a pilot study in castration-resistant prostate cancer patients. Mol Imaging Biol. 2018;20:482–91.CrossRefGoogle Scholar
  21. 21.
    Murray I, Chittenden SJ, Denis-Bacelar AM, Hindorf C, Parker C, Chua S, Flux GD. The potential of 223Ra and 18F-fluoride imaging to predict bone lesion response to treatment with 223Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1832–44.CrossRefGoogle Scholar
  22. 22.
    Etchebehere EC, Araujo JC, Milton DR, Erwin WD, Wendt RE 3rd, Swanston NM, et al. Skeletal tumor burden on baseline 18F-fluoride PET/CT predicts bone marrow failure after 223Ra therapy. Clin Nucl Med. 2016;41:268–73.CrossRefGoogle Scholar
  23. 23.
    Peterson LM, O’Sullivan J, Wu QV, Novakova-Jiresova A, Jenkins I, Lee JH, Shields A, Montgomery S, Linden HM, Gralow JR, Gadi VK, Muzi M, Kinahan PE, Mankoff DA, Specht JM. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer. J Nucl Med. 2018;59:1823.  https://doi.org/10.2967/jnumed.118.211102.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brito A, Santos A, Sasse AD, Cabello C, Oliveira P, Mosci C, Souza T, Amorim B, Lima M, Ramos CD, Etchebehere E. 18F-Fluoride PET/CT tumor burden quantification predicts survival in breast cancer. Oncotarget. 2017;8:36001–11.CrossRefGoogle Scholar
  25. 25.
    Rossleigh MA, Lovegrove FT, Reynolds PM, Byrne MJ. Serial bone scans in the assessment of response to therapy in advanced breast carcinoma. Clin Nucl Med. 1982;7:397–402.CrossRefGoogle Scholar
  26. 26.
    Castello A, Macapinlac HA, Lopci E, Santos EB. Prostate-specific antigen flare induced by 223RaCl2 in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:2256.  https://doi.org/10.1007/s00259-018-4051-y. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  27. 27.
    Balasubramanian Harisankar CN, Preethi R, John J. Metabolic flare phenomenon on 18 fluoride-fluorodeoxy glucose positron emission tomography-computed tomography scans in a patient with bilateral breast cancer treated with second-line chemotherapy and bevacizumab. Indian J Nucl Med. 2015;30:145–7.CrossRefGoogle Scholar
  28. 28.
    Wade AA, Scott JA, Kuter I, Fischman AJ. Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol. 2006;186:1783–6.CrossRefGoogle Scholar
  29. 29.
    Cook G Jr, Parker C, Chua S, Johnson B, Aksnes AK, Lewington VJ. 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res. 2011;1:4.CrossRefGoogle Scholar
  30. 30.
    Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics. 2015;5:413–27.CrossRefGoogle Scholar
  31. 31.
    Kairemo K, Milton DR, Etchebehere E, Rohren EM, Macapinlac HA. Final outcome of 223Ra-therapy and the role of 18F-fluoride-PET in response evaluation in metastatic castration-resistant prostate cancer—a single institution experience. Curr Radiopharm. 2018;11:147–52.CrossRefGoogle Scholar
  32. 32.
    Etchebehere E, Brito AE, Kairemo K, Araujo J, Rohren E, Macapinlac H. Interim 18F-fluoride PET/CT is not able to predict outcome after radium-223 therapy. Radiol Bras. 2019;52:33.CrossRefGoogle Scholar
  33. 33.
    Yu EY, Duan F, Muzi M, Deng X, Chin BB, Alumkal JJ, et al. Castration-resistant prostate cancer bone metastasis response measured by 18F-fluoride PET after treatment with dasatinib and correlation with progression-free survival: results from American College of Radiology Imaging Network 6687. J Nucl Med. 2015;56:354–60.CrossRefGoogle Scholar
  34. 34.
    Harmon SA, Perk T, Lin C, Eickhoff J, Choyke PL, Dahut WL, Apolo AB, Humm JL, Larson SM, Morris MJ, Liu G, Jeraj R. Quantitative assessment of early [18F] sodium fluoride positron emission tomography/computed tomography response to treatment in men with metastatic prostate cancer to bone. J Clin Oncol. 2017;35:2829–37.CrossRefGoogle Scholar
  35. 35.
    Azad GK, Siddique M, Taylor B, Green A, O’Doherty J, Gariani J, Blake GM, Mansi J, Goh V, Cook G. Is Response Assessment of Breast Cancer Bone Metastases Better with Measurement of 18F-Fluoride Metabolic Flux Than with Measurement of 18F-Fluoride PET/CT SUV? J Nucl Med. 2019;60:322–7.CrossRefGoogle Scholar
  36. 36.
    Harmon SA, Bergvall E, Mena E, Shih JH, Adler S, McKinney Y, Mehralivand S, Citrin DE, Couvillon A, Madan R, Gulley J, Mease RC, Jacobs PM, Pomper MG, Turkbey B, Choyke PL, Lindenberg ML. A prospective comparison of 18F-sodium fluoride PET/CT and PSMA-targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 2018;59:1665.  https://doi.org/10.2967/jnumed.117.207373. [Epub ahead of print].CrossRefGoogle Scholar
  37. 37.
    Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, Dimitrakopoulou-Strauss A. Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging. 2017;44:50–62.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Elba Etchebehere
    • 1
  • Kalevi Kairemo
    • 2
  1. 1.Division of Nuclear MedicineUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Nuclear Medicine and Molecular RadiotherapyDocrates Cancer CenterHelsinkiFinland

Personalised recommendations