Sodium Fluoride Imaging in Oncology

  • Kalevi Kairemo
  • Homer A. Macapinlac
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)


18F-NaF PET/CT has established its place in the oncologic clinical routine. It has essential role in initial staging, detection of suspected first osseous metastasis, suspected progression of osseous metastasis, or treatment monitoring in many types of cancer, such as prostate, lung, and breast cancer.


  1. 1.
    Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.CrossRefGoogle Scholar
  2. 2.
    Gareen IF, Hillner BE, Hanna L, et al. Hospice admission and survival after 18F-fluoride PET performed for evaluation of osseous metastatic disease in the national oncologic PET registry. J Nucl Med. 2018;59:427–33.CrossRefGoogle Scholar
  3. 3.
    Oyen W, Sundram F, Haug AR, et al. Radium-223 dichloride (Ra-223) for the treatment of metastatic castration-resistant prostate cancer: optimizing clinical practice in nuclear medicine centers. J Oncopathol. 2015;3:1–25.CrossRefGoogle Scholar
  4. 4.
    Sorto G, Gallichio R, Pellegrino T, et al. Impact of 18F-fluoride PET/CT on implementing early treatment of painful bone metastases with Sm-153 EDTMP. Nucl Med Biol. 2013;40:518–23.CrossRefGoogle Scholar
  5. 5.
    Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy; single- and multi-field-of-view SPECT; 18F-fluoride PET; and 18Ffluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kairemo K, Milton DR, Etchebehere E, et al. Final outcome of 223Ra-therapy and the role of 18F-fluoride-PET in response evaluation in metastatic castration-resistant prostate cancer–a single institution experience. Curr Radiopharm. 2018;11:152–7.Google Scholar
  7. 7.
    Etchebehere EC, Araujo JC, Fox PS, Swanston NM, Macapinlac HA, Rohren EM. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor turden on baseline 18Ffluoride PET/CT in predicting overall survival. J Nucl Med. 2015;56:1177–84.CrossRefGoogle Scholar
  8. 8.
    von Eyben FE, Kairemo K, Kiljunen T, Joensuu T. Planning of external beam radiotherapy for prostate cancer guided by PET/CT. Curr Radiopharm. 2015;8:19–31.CrossRefGoogle Scholar
  9. 9.
    Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Coleman RE. Impact of 18F-fluoride PET in patients with known prostate cancer: initial results from the national oncologic PET registry. J Nucl Med. 2014;55:574–81.CrossRefGoogle Scholar
  10. 10.
    Langsteger W, Balogova S, Huchet V, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55:448–57.PubMedGoogle Scholar
  11. 11.
    Scher HI, Sawyers CL. Biology of progressive, castration resistant prostate cancer: directed therapies targeting the androgen receptor signaling axis. J Clin Oncol. 2005;23:8253–61.CrossRefGoogle Scholar
  12. 12.
    Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics (Basel). 2015;5:413–27.CrossRefGoogle Scholar
  13. 13.
    Etchebehere E, Brito AE, Rezaee A, et al. Therapy assessment of bone metastatic disease in the era of 223radium. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):84–96.CrossRefGoogle Scholar
  14. 14.
    Taube T, Elomaa I, Blomqvist C, Beneton MN, Kanis JA. Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone. 1994;15:161–6.CrossRefGoogle Scholar
  15. 15.
    WAM B, van der Zant FM, Wondergem M, Knol RJJ. Accuracy of 18F-NaF PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma. Nucl Med Commun. 2018;39(4):325–33.Google Scholar
  16. 16.
    Brito AE, Santos A, Sasse AD, et al. 18F-Fluoride PET/CT tumor burden quantification predicts survival in breast cancer. Oncotarget. 2017;8(22):36001–11.CrossRefGoogle Scholar
  17. 17.
    Azad G, Siddique MM, Taylor B, et al. Does measurement of 18F-fluoride metabolic flux improve response assessment of breast cancer bone metastases compared with standardised uptake values in 18F-fluoride PET/CT? J Nucl Med. 2019;60:322. Scholar
  18. 18.
    Peterson LM, O’Sullivan J, Wu QV, et al. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer. J Nucl Med. 2018;59:1823. Scholar
  19. 19.
    Rao L, Zong Z, Chen Z, et al. 18F-labeled NaF PET/CT in detection of bone metastases in patients with preoperative lung cancer. Medicine (Baltimore). 2016;95:e3490.CrossRefGoogle Scholar
  20. 20.
    Lee H, Lee WW, Park SY, Kim SE. F-18 sodium fluoride positron emission tomography/computed tomography for detection of thyroid cancer bone metastasis compared with bone scintigraphy. Korean J Radiol. 2016;17:281–8. Scholar
  21. 21.
    Ota N, Kato K, Iwano S, et al. Comparison of 18F-fluoride PET/CT, 18F-FDG PET/CT and bone scintigraphy (planar and SPECT) in detection of bone metastases of differentiated thyroid cancer: a pilot study. Br J Radiol. 2014;87:20130444.CrossRefGoogle Scholar
  22. 22.
    Schirrmeister H, Buck A, Guhlmann A, Reske SN. Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid. 2001;11:677–83.CrossRefGoogle Scholar
  23. 23.
    Gerety EL, Lawrence EM, Wason J, et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol. 2015;26:2113–8.CrossRefGoogle Scholar
  24. 24.
    Sharma P, Karunanithi S, Chakraborty PS, et al. 18F-fluoride PET/CT for detection of bone metastasis in patients with renal cell carcinoma: a pilot study. Nucl Med Commun. 2014;35:1247–53.CrossRefGoogle Scholar
  25. 25.
    Duarte PS, de Castroneves LA, Sado HN, et al. Bone and calcified soft tissue metastases of medullary thyroid carcinoma better characterized on 18F-fluoride PET/CT than on 68Ga-Dotatate PET/CT. Nucl Med Mol Imaging. 2018;52:318–23. Scholar
  26. 26.
    Duarte PS, Marin JFG, Carvalho D, et al. Brain metastasis of medullary thyroid carcinoma without macroscopic calcification detected first on 68Ga-Dotatate and then on 18F-fluoride PET/CT. Clin Nucl Med. 2018;43:623–4.CrossRefGoogle Scholar
  27. 27.
    do Vale RH, Marin JF, Duarte PS, Sapienza MT, Buchpiguel CA. Visualization of lymph nodal and hepatic metastases of medullary thyroid carcinoma on 18F-fluoride PET/CT. Clin Nucl Med. 2015;40:895–6.CrossRefGoogle Scholar
  28. 28.
    Basu S, Ranade R, Thapa P. 177Lu-DOTATATE versus 177Lu-EDTMP versus cocktail/sequential therapy in bone-confined painful metastatic disease in medullary carcinoma of the thyroid and neuroendocrine tumour: can semiquantitative comparison of 68Ga-DOTATATE and 18F-fluoride PET/CT aid in personalized treatment decision making in selecting the best therapeutic option? Nucl Med Commun. 2016;37:100–2.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kalevi Kairemo
    • 1
    • 2
  • Homer A. Macapinlac
    • 2
  1. 1.Department of Nuclear Medicine and Molecular RadiotherapyDocrates Cancer CenterHelsinkiFinland
  2. 2.Department of Nuclear MedicineUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations