18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging of the Peripheral Vasculature

  • Maaz B. J. SyedEmail author
  • Jakub Kaczynski
  • David E. Newby
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)


Vascular pathology poses a significant burden on global disease. Vessel calcification is a systemic phenomenon that affects multiple organ beds. Many of the processes leading to vascular calcification share immune-mediated pathways [1, 2]. Contemporary investigative techniques obtain excellent images of morphological features within the vascular system. Established anatomical imaging, such as catheter angiography, computed tomography and magnetic resonance imaging, can accurately visualise the lumen [3]. Advances in computed tomography and magnetic resonance imaging now allow for the non-invasive detection of certain high-risk plaque features [4, 5]. Ultrasound duplex assesses the flow-limiting potential of stenotic lesions to provide a functional measure of vascular disease. Morphological imaging techniques are the basis of modern vascular imaging.


  1. 1.
    Teague HL, Ahlman MA, Alavi A, Wagner DD, Lichtman AH, Nahrendorf M, et al. Unraveling vascular inflammation: from immunology to imaging. J Am Coll Cardiol. 2017;70(11):1403–12.CrossRefGoogle Scholar
  2. 2.
    Fuery MA, Liang L, Kaplan FS, Mohler ER. Vascular ossification: pathology, mechanisms, and clinical implications. Bone [Internet]. 2017 [cited 2017 Dec 11].
  3. 3.
    Doris M, Newby DE. Coronary computed tomography angiography as a diagnostic and prognostic tool: perspectives from the SCOT-HEART trial. Curr Cardiol Rep. 2016;18:18.CrossRefGoogle Scholar
  4. 4.
    Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary computed tomography angiography. Nat Rev Cardiol. 2014;11(7):390–402.CrossRefGoogle Scholar
  5. 5.
    Robson PM, Dey D, Newby DE, Berman D, Li D, Fayad ZA, et al. MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging. 2017;10(10):1165–79.CrossRefGoogle Scholar
  6. 6.
    Caffarelli C, Montagnani A, Nuti R, Gonnelli S. Bisphosphonates, atherosclerosis and vascular calcification: update and systematic review of clinical studies. Clin Interv Aging. 2017;12:1819–28.CrossRefGoogle Scholar
  7. 7.
    Hirsch D, Azoury R, Sarig S, Kruth HS. Colocalization of cholesterol and hydroxyapatite in human atherosclerotic lesions. Calcif Tissue Int. 1993;52(2):94–8.CrossRefGoogle Scholar
  8. 8.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.CrossRefGoogle Scholar
  9. 9.
    Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.CrossRefGoogle Scholar
  10. 10.
    Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol. 2003;14(6):561–6.CrossRefGoogle Scholar
  11. 11.
    Venkatasubramanian S, Noh RM, Daga S, Langrish JP, Mills NL, Waterhouse BR, et al. Effects of the small molecule SIRT1 activator, SRT2104 on arterial stiffness in otherwise healthy cigarette smokers and subjects with type 2 diabetes mellitus. Open Heart. 2016;3(1):e000402.CrossRefGoogle Scholar
  12. 12.
    Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res. 2000;87(11):1055–62.CrossRefGoogle Scholar
  13. 13.
    Aghagolzadeh P, Bachtler M, Bijarnia R, Jackson C, Smith ER, Odermatt A, et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis. 2016;251:404–14.CrossRefGoogle Scholar
  14. 14.
    Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600.CrossRefGoogle Scholar
  15. 15.
    Barrett HE, Cunnane EM, Hidayat H, O’Brien JM, Moloney MA, Kavanagh EG, et al. On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J Vasc Surg. 2018;67(4):1234–1246.e2.CrossRefGoogle Scholar
  16. 16.
    Dweck MR, Jenkins WSA, Vesey AT, Pringle MAH, Chin CWL, Malley TS, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging. 2014;7(2):371–8.CrossRefGoogle Scholar
  17. 17.
    Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48.CrossRefGoogle Scholar
  18. 18.
    Blomberg BA, de Jong PA, Thomassen A, Lam MGE, Vach W, Olsen MH, et al. Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging. 2017;44(2):249–58.CrossRefGoogle Scholar
  19. 19.
    Kim J, Budoff MJ, Nasir K, Wong ND, Yeboah J, Al-Mallah MH, et al. Thoracic aortic calcium, cardiovascular disease events, and all-cause mortality in asymptomatic individuals with zero coronary calcium: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2017;1:1–8.CrossRefGoogle Scholar
  20. 20.
    Hoffmann U, Massaro JM, D’Agostino RB, Kathiresan S, Fox CS, O’Donnell CJ. Cardiovascular event prediction and risk reclassification by coronary, aortic, and valvular calcification in the Framingham heart study. J Am Heart Assoc [Internet]. 2016 [cited 2018 Aug 29];5(2).
  21. 21.
    Forsythe RO. Microcalcification predicts abdominal aortic aneurysm expansion and repair: the 18F-sodium fluoride imaging in abdominal aortic aneurysms (SoFIA3) study. J Vasc Surg. 2017;65(6):24S–5S.CrossRefGoogle Scholar
  22. 22.
    Forsythe RO, Dweck MR, McBride OMB, Vesey AT, Semple SI, Shah ASV, et al. 18F–sodium fluoride uptake in abdominal aortic aneurysms: the SoFIA3 study. J Am Coll Cardiol. 2018;71(5):513–23.CrossRefGoogle Scholar
  23. 23.
    Wanga S, Hibender S, Ridwan Y, van Roomen C, Vos M, van der Made I, et al. Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome: microcalcification and elastin fragmentation in Marfan syndrome. J Pathol. 2017;243(3):294–306.CrossRefGoogle Scholar
  24. 24.
    Ladich E, Yahagi K, Romero ME, Virmani R. Vascular diseases: aortitis, aortic aneurysms, and vascular calcification. Cardiovasc Pathol. 2016;25(5):432–41.CrossRefGoogle Scholar
  25. 25.
    Howard DP, van Lammeren GW, Rothwell PM, Redgrave JN, Moll FL, de Vries J-PPM, et al. Symptomatic carotid atherosclerotic disease: correlations between plaque composition and ipsilateral stroke risk. Stroke. 2015;46(1):182–9.CrossRefGoogle Scholar
  26. 26.
    Huibers A, de Borst GJ, Wan S, Kennedy F, Giannopoulos A, Moll FL, et al. Non-invasive carotid artery imaging to identify the vulnerable plaque: current status and future goals. Eur J Vasc Endovasc Surg. 2015;50(5):563–72.CrossRefGoogle Scholar
  27. 27.
    den Hartog AG, Bovens SM, Koning W, Hendrikse J, Luijten PR, Moll FL, et al. Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis. Eur J Vasc Endovasc Surg. 2013;45(1):7–21.CrossRefGoogle Scholar
  28. 28.
    Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–13.CrossRefGoogle Scholar
  29. 29.
    Clarke MCH, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res. 2008;102(12):1529–38.CrossRefGoogle Scholar
  30. 30.
    Oliver TB, Lammie GA, Wright AR, Wardlaw J, Patel SG, Peek R, et al. Atherosclerotic plaque at the carotid bifurcation: computed tomography angiographic appearance with histopathologic correlation. AJNR Am J Neuroradiol. 1999;20(5):897–901.PubMedGoogle Scholar
  31. 31.
    Vesey AT, Jenkins WSA, Irkle A, Moss A, Sng G, Forsythe RO, et al. 18F-fluoride and 18F-Fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case–control study. Circ Cardiovasc Imaging. 2017;10(3):e004976.Google Scholar
  32. 32.
    Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JLE, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.CrossRefGoogle Scholar
  33. 33.
    Vesey AT, Dweck MR, Fayad ZA. Utility of combining PET and MR imaging of carotid plaque. Neuroimaging Clin N Am. 2016;26(1):55–68.CrossRefGoogle Scholar
  34. 34.
    Moe SM, Chen NX. Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2008;19(2):213–6.CrossRefGoogle Scholar
  35. 35.
    Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24(7):1161–70.CrossRefGoogle Scholar
  36. 36.
    Janssen T, Bannas P, Herrmann J, Veldhoen S, Busch JD, Treszl A, et al. Association of linear 18F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/computed tomography study. J Nucl Cardiol. 2013;20(4):569–77.CrossRefGoogle Scholar
  37. 37.
    Stacy MR, Sinusas AJ. Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin. 2016;34(1):167–77.CrossRefGoogle Scholar
  38. 38.
    Forsythe RO, Newby DE, Robson JMJ. Monitoring the biological activity of abdominal aortic aneurysms beyond ultrasound. Heart. 2016;102(11):817–24.CrossRefGoogle Scholar
  39. 39.
    Rothwell P, Eliasziw M, Gutnikov S, Fox A, Taylor D, Mayberg M, et al. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003;361(9352):107–16.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maaz B. J. Syed
    • 1
    Email author
  • Jakub Kaczynski
    • 1
  • David E. Newby
    • 1
  1. 1.British Heart Foundation Department of Cardiovascular SciencesQueens Medical Research Institute, University of EdinburghEdinburghUK

Personalised recommendations