Visualisation of Structure and Processes on Temporal Networks

  • Claudio D. G. Linhares
  • Jean R. Ponciano
  • Jose Gustavo S. Paiva
  • Bruno A. N. Travençolo
  • Luis E. C. RochaEmail author
Part of the Computational Social Sciences book series (CSS)


The temporal dimension increases the complexity of network models but also provides more detailed information about the sequence of connections between nodes allowing a more detailed mapping of processes taking place on the network. The visualisation of such evolving structures thus permits faster identification of non-trivial activity patterns and provides insights about the mechanisms driving the dynamics on and of networks. In this chapter, we introduce key concepts and discuss visualisation methods of temporal networks based on 2D layouts where nodes correspond to horizontal lines with circles to represent active nodes and vertical edges connecting those active nodes at given times. We introduce and discuss algorithms to re-arrange nodes and edges to reduce visual clutter, layouts to highlight node and edge activity, and visualise dynamic processes on temporal networks. We illustrate the methods using real-world temporal network data of face-to-face human contacts and simulated random walk and infection dynamics.


Network visualisation Information visualisation Edge overlap Visual clutter Epidemics Random Walk Social networks Time-varying networks Dynamic networks 


  1. 1.
    Newman, M.: Networks: An Introduction. OUP, Oxford (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    da Fontoura Costa, L., Oliveira, O.N. Jr., Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, Los Altos (1999)Google Scholar
  5. 5.
    Sales, T.: Llull as computer scientist, or why llull was one of us. In: Sierra, C., Fidora, A. (eds.) Ramon Llull: From the Ars Magna to Artificial Intelligence, chap. 2, pp. 25–38. Artificial Intelligence Research Institute, Barcelona (2011)Google Scholar
  6. 6.
    Moreno, J.L.: Who Shall Survive? A New Approach to the Problem of Human Interrelations. Nervous and Mental Disease Publishing Co., Washington (1934)Google Scholar
  7. 7.
    Lima, M.: Visual Complexity. Mapping Patterns of Information. Princeton Architectural Press, New York (2011)Google Scholar
  8. 8.
    Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation. IEEE Trans. Vis. Comput. Graph. 13(6), 1216–1223 (2007)CrossRefGoogle Scholar
  9. 9.
    Tamassia, R.: Handbook of Graph Drawing and Visualization. Chapman and Hall/CRC, London (2013)zbMATHGoogle Scholar
  10. 10.
    Rocha, L.E.C.: Dynamics of air transport networks: a review from a complex systems perspective. Chin. J. Aeronaut. 30, 469–478 (2017)CrossRefGoogle Scholar
  11. 11.
    Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Rocha, L.E.C., Masuda, N., Holme, P.: Sampling of temporal networks: methods and biases. Phys. Rev. E 96(5), 052302 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Karsai, M., Jo, H.-H., Kaski, K.: Bursty Human Dynamics. Springer, Berlin (2018)CrossRefGoogle Scholar
  14. 14.
    Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011)CrossRefGoogle Scholar
  15. 15.
    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: Eurographics Conference on Visualization (EuroVis) (2014)Google Scholar
  16. 16.
    Sazama, P.J.: An overview of visualizing dynamic graphs. Unpublished (2015)Google Scholar
  17. 17.
    Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PLoS One 5(1), e8694 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)CrossRefGoogle Scholar
  19. 19.
    Bach, B., Pietriga, E., Fekete, J.-D.: Visualizing dynamic networks with matrixcubes. In: Proceedings of the 2014 Annual Conference on Human Factors in Computing Systems (CHI2014), pp. 877–886. ACM, New York (2014)Google Scholar
  20. 20.
    Jerding, D.F., Stasko, J.T.: The information mural: a technique for displaying and navigating large information spaces. IEEE Trans. Vis. Comput. Graph. 4(3), 257–271 (1998)CrossRefGoogle Scholar
  21. 21.
    van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Dynamic network visualization with extended massive sequence views. IEEE Trans. Vis. Comput. Graph. 20(8), 1087–1099 (2014)CrossRefGoogle Scholar
  22. 22.
    Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)zbMATHCrossRefGoogle Scholar
  23. 23.
    Bach, B.: Unfolding dynamic networks for visual exploration. IEEE Comput. Graph. Appl. 36, 74–82 (2016)CrossRefGoogle Scholar
  24. 24.
    Linhares, C.D.G., Travençolo, B.A.N., Paiva, J.G.S., Rocha, L.E.C.: DyNetVis: a system for visualization of dynamic networks. In: Proceedings of the Symposium on Applied Computing, SAC ’17, (Marrakech, Morocco), pp. 187–194. ACM, New York (2017)Google Scholar
  25. 25.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Behrisch, M., Bach, B., Henry Riche, N., Schreck, T., Fekete, J.-D.: Matrix reordering methods for table and network visualization. In: Computer Graphics Forum, vol. 35, pp. 693–716. Wiley Online Library (2016)Google Scholar
  27. 27.
    Six, J.M., Tollis, I.G.: A framework and algorithms for circular drawings of graphs. J. Discrete Algoritms 4, 25–50 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mi, P., Sun, M., Masiane, M., Cao, Y., North, C.: Interactive graph layout of a million nodes. Informatics 3, 23 (2016)CrossRefGoogle Scholar
  29. 29.
    Archambault, D., Purchase, H.C.: Can animation support the visualisation of dynamic graphs? Inf. Sci. 330, 495–509 (2016)CrossRefGoogle Scholar
  30. 30.
    Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van Wijk, J.J., van Deursen, A.: Understanding execution traces using massive sequence and circular bundle views. In: 15th IEEE International Conference on Program Comprehension ICPC, pp. 49–58. IEEE Computer Society, Washington (2007)Google Scholar
  31. 31.
    Ware, C.: Information Visualization: Perception for Design, vol. 3. Morgan Kaufmann Publishers Inc., Los Altos (2013)Google Scholar
  32. 32.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Linhares, C.D.G., Ponciano, J.R., Pereira, F.S.F., Rocha, L.E.C., Paiva, J.G.S., Travençolo, B.A.N.: A scalable node ordering strategy based on community structure for enhanced temporal network visualization. Comput. Graph. (2019). CrossRefGoogle Scholar
  35. 35.
    Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3, 3006 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Zhao, Y., She, Y., Chen, W., Lu, Y., Xia, J., Chen, W., Liu, J., Zhou, F.: EOD edge sampling for visualizing dynamic network via massive sequence view. IEEE Access 6, 53006–53018 (2018)CrossRefGoogle Scholar
  37. 37.
    Wilke, C.: Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O’Reilly, Newton (2019)Google Scholar
  38. 38.
    Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLOS One 10(9), e0136497 (2015)CrossRefGoogle Scholar
  39. 39.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Miller, R.G.: Survival Analysis. Wiley, London (1997)Google Scholar
  41. 41.
    Starnini, M., Baronchelli, A., Barrat, A., Pastor-Satorras, R.: Random walks on temporal networks. Phys. Rev. E 85, 056115 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Rocha, L.E.C., Masuda, N.: Random walk centrality for temporal networks. New J. Phys. 16, 063023 (2014)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  44. 44.
    Rocha, L.E.C., Blondel, V.D.: Bursts of vertex activation and epidemics in evolving networks. PLOS Comput. Biol. 9, e1002974 (2013)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C.J., Schweitzer, F.: Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nat. Commun. 5, 5024 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Huang, W., Eadesband, P., Hong, S.-H.: Measuring effectiveness of graph visualizations: a cognitive load perspective. Inf. Vis. 8(3), 139–152 (2009)CrossRefGoogle Scholar
  47. 47.
    Keim, D.: Visual exploration of large data sets. Commun. ACM 44(8), 38–44 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Claudio D. G. Linhares
    • 1
  • Jean R. Ponciano
    • 1
  • Jose Gustavo S. Paiva
    • 1
  • Bruno A. N. Travençolo
    • 1
  • Luis E. C. Rocha
    • 2
    • 3
    Email author
  1. 1.Faculty of ComputingFederal University of UberlândiaUberlândiaBrazil
  2. 2.Department of General EconomicsGhent UniversityGhentBelgium
  3. 3.Department of International Business and EconomicsUniversity of GreenwichLondonUK

Personalised recommendations