Spreading of Infection on Temporal Networks: An Edge-Centered Perspective

  • Andreas Koher
  • James P. Gleeson
  • Philipp HövelEmail author
Part of the Computational Social Sciences book series (CSS)


We discuss a continuous-time extension of the contact-based (CB) model, as proposed in [Koher et al. Phys. Rev. X 9, 031017 (2019)], for infections with permanent immunity on temporal networks. At the core of our methodology is a fundamental change to an edge-centered perspective, which allows for an accurate model on temporal networks, where the underlying time-aggregated graph has a tree structure. From the continuous-time CB model, we derive the infection propagator for the low prevalence limit and propose a novel spectral criterion to estimate the epidemic threshold. In addition, we explore the relation between the continuous-time CB model and the previously proposed edge-based compartmental model, as well as the message-passing framework.


Epidemic spreading Temporal networks Epidemic threshold Infection propagator Spectral radius Non-backtracking matrix 



AK and PH acknowledge the support by Deutsche Forschungsgmeinschaft (DFG) in the framework of Collaborative Research Center 910. AK acknowledges further support by German Academic Exchange Service (DAAD) via a short-term scholarship. JPG acknowledges the support by Science Foundation Ireland (grant numbers 16/IA/4470 and 16/RC/3918).


  1. 1.
    Hamer, W.H.: Lancet 1, 733 (1906)Google Scholar
  2. 2.
    Ross, R.: The Prevention of Malaria, E.P. Dutton, New York (1910)Google Scholar
  3. 3.
    Kermack, W.O., McKendrick, A.G.: Proc. R. Soc. A 115(772), 700 (1927)ADSCrossRefGoogle Scholar
  4. 4.
    Bailey, N.T.J.: The Mathematical Theory of Epidemics. Hafner, Royal Oak (1957)Google Scholar
  5. 5.
    Anderson, R.H., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)Google Scholar
  6. 6.
    Hethcote, H.W.: SIAM Rev. 42(4), 599 (2000)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  8. 8.
    Bailey, N.T.J.: The mathematical theory of infectious diseases and its applications. In Mathematics in Medicine Series. Charles Griffin & Company Ltd., Bucks (1975)zbMATHGoogle Scholar
  9. 9.
    Simon, P.L., Taylor, M., Kiss, I.Z.: J. Math. Biol. 62(4), 479 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Van Mieghem, P., Omic, J., Kooij, R.: IEEE/ACM Trans. Netw. 17(1), 1 (2009)CrossRefGoogle Scholar
  11. 11.
    Kiss, I.Z., Röst, G., Vizi, Z.: Phys. Rev. Lett. 115(7), 078701 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Sherborne, N., Miller, J.C., Blyuss, K.B., Kiss, I.Z.: J. Math. Biol. 76(3), 755 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Karrer, B., Newman, M.E.J.: Phys. Rev. E 82, 016101 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gonçalves, S., Abramson, G., Gomes, M.F.C.: Eur. Phys. J. B 81(3), 363 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Van Mieghem, P., van de Bovenkamp, R.: Phys. Rev. Lett. 110, 108701 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)zbMATHCrossRefGoogle Scholar
  17. 17.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Rev. Mod. Phys. 87, 925 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Proc. Natl. Acad. Sci. 106(51), 21484 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Nature 429, 180 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S.: Nature 437(7056), 209 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Halloran, M.E., Ferguson, N.M., Eubank, S., Longini, I.M., Cummings, D.A.T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T.C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C.A., Burke, D.S., Cooley, P.: Proc. Natl. Acad. Sci. 105(12), 4639 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: PLOS Comput. Biol. 6(1), 1 (2010)CrossRefGoogle Scholar
  23. 23.
    Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, M.E.: Science 309(5737), 1083 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Merler, S., Ajelli, M., Pugliese, A.: PLOS Comput. Biol. 7(9), 1 (2011)CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: In: Proceedings 22nd International Symposium on Reliable Distributed Systems, 2003 (2003), pp. 25–34Google Scholar
  26. 26.
    Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Phys. Rev. X 5, 021005 (2015)Google Scholar
  27. 27.
    Rocha, L.E.C., Masuda, N.: Sci. Rep. 6, 31456 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008)CrossRefGoogle Scholar
  29. 29.
    Ganesh, A., Massoulié, L., Towsley, D.: In Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1455–1466. IEEE, Piscataway (2005)Google Scholar
  30. 30.
    Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., Moreno, Y.: Europhys. Lett. 89(3), 38009 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Youssef, M., Scoglio, C.: J. Theor. Biol. 283(1), 136 (2011)CrossRefGoogle Scholar
  32. 32.
    Pearl, J.: In: Proceedings of the Second AAAI Conference on Artificial Intelligence, AAAI’82, pp. 133–136. AAAI Press, Menlo Park (1982)Google Scholar
  33. 33.
    Karrer, B., Newman, M.E.J., Zdeborová, L., Phys. Rev. Lett. 113, 208702 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Miller, J.C., Slim, A.C., Volz, E.M.: J. Royal Soc. Interface 9(70), 890 (2012)CrossRefGoogle Scholar
  35. 35.
    Lokhov, A.Y., Mézard, M., Ohta, H., Zdeborová, L.: Phys. Rev. E 90(1), 012801 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Wilkinson, R.R., Ball, F.G., Sharkey, K.J.: J. Math. Biol. 75(6), 1563 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Koher, A., Lentz, H.H.K., Gleeson, J.P., Hövel, P.: Phys. Rev. X 9, 031017 (2019)Google Scholar
  38. 38.
    Miller, J.C.: PLoS One 9(7), 1 (2014)CrossRefGoogle Scholar
  39. 39.
    Miller, J.C., Volz, E.M.: J. Math. Biol. 67(4), 869 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Miller, J.C., Kiss, I.Z.: Math. Model. Nat. Phenom. 9(2), 4 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Eames, K.T.D., Keeling, M.J.: Proc. Natl. Acad. Sci. 99(20), 13330 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.H.: J. Math. Biol. 62(2), 143 (2011)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kiss, I.Z., Morris, C.G., Sélley, F., Simon, P.L., Wilkinson, R.R.: J. Math. Biol. 70(3), 437 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Lokhov, A.Y.: Dynamic cavity method and problems on graphs. Theses, Université Paris Sud – Paris XI (2014)Google Scholar
  45. 45.
    Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., Zhang, P.: Proc. Natl. Acad. Sci. 110(52), 20935 (2013)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Valdano, E., Fiorentin, M.R., Poletto, C., Colizza, V.: Phys. Rev. Lett. 120(6), 068302 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    Speidel, L., Klemm, K., Eguiluz, V.M., Masuda, N.: New J. Phys. 18(7), 073013 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Newman, M.E.J.: Phys. Rev. E 66(1), 016128 (2002)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Molloy, M., Reed, B.: Random Struct. Algoritm. 6(2–3), 161 (1995)CrossRefGoogle Scholar
  50. 50.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Miller, J.C.: Phys. Rev. E 76, 010101 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas Koher
    • 1
  • James P. Gleeson
    • 2
  • Philipp Hövel
    • 3
    Email author
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  2. 2.MACSI, Department of Mathematics and StatisticsUniversity of LimerickLimerickIreland
  3. 3.School of Mathematical SciencesUniversity College CorkCorkIreland

Personalised recommendations