Advertisement

Challenges in Community Discovery on Temporal Networks

  • Remy CazabetEmail author
  • Giulio Rossetti
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

Community discovery is one of the most studied problems in network science. In recent years, many works have focused on discovering communities in temporal networks, thus identifying dynamic communities. Interestingly, dynamic communities are not mere sequences of static ones; new challenges arise from their dynamic nature. Despite the large number of algorithms introduced in the literature, some of these challenges have been overlooked or little studied until recently. In this chapter, we will discuss some of these challenges and recent propositions to tackle them. We will, among other topics, discuss of community events in gradually evolving networks, on the notion of identity through change and the ship of Theseus paradox, on dynamic communities in different types of networks including link streams, on the smoothness of dynamic communities, and on the different types of complexity of algorithms for their discovery. We will also list available tools and libraries adapted to work with this problem.

Keywords

Dynamic communities Temporal smoothness Community life-cycle Theseus ship Community events Dynamic graph benchmark 

References

  1. 1.
    Aynaud, T., Guillaume, J.L.: Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 513–519. IEEE, Piscataway (2010)Google Scholar
  2. 2.
    Aynaud, T., Guillaume, J.L.: Multi-step community detection and hierarchical time segmentation in evolving networks. In: Proceedings of the 5th SNA-KDD Workshop (2011)Google Scholar
  3. 3.
    Bazzi, M., Jeub, L.G., Arenas, A., Howison, S.D., Porter, M.A.: Generative benchmark models for mesoscale structure in multilayer networks. arXiv preprint arXiv:1608.06196 (2016)Google Scholar
  4. 4.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10,008 (2008)CrossRefGoogle Scholar
  5. 5.
    Boudebza, S., Cazabet, R., Azouaou, F., Nouali, O.: Olcpm: an online framework for detecting overlapping communities in dynamic social networks. Comput. Commun. 123, 36–51 (2018)CrossRefGoogle Scholar
  6. 6.
    Cazabet, R., Amblard, F.: Dynamic community detection. In: Encyclopedia of Social Network Analysis and Mining, pp. 404–414. Springer, Berlin (2014)Google Scholar
  7. 7.
    Cazabet, R., Amblard, F., Hanachi, C.: Detection of overlapping communities in dynamical social networks. In: 2010 IEEE Second International Conference on Social Computing, pp. 309–314. IEEE, Piscataway (2010)Google Scholar
  8. 8.
    Cazabet, R., Takeda, H., Hamasaki, M., Amblard, F.: Using dynamic community detection to identify trends in user-generated content. Soc. Netw. Anal. Min. 2(4), 361–371 (2012)CrossRefGoogle Scholar
  9. 9.
    Chen, Z., Wilson, K.A., Jin, Y., Hendrix, W., Samatova, N.F.: Detecting and tracking community dynamics in evolutionary networks. In: 2010 IEEE International Conference on Data Mining Workshops, pp. 318–327. IEEE, Piscataway (2010)Google Scholar
  10. 10.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter. J. Complex Syst. 1695 (2006). http://igraph.org
  11. 11.
    Falkowski, T., Bartelheimer, J., Spiliopoulou, M.: Mining and visualizing the evolution of subgroups in social networks. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 52–58. IEEE, Piscataway (2006)Google Scholar
  12. 12.
    Folino, F., Pizzuti, C.: Multiobjective evolutionary community detection for dynamic networks. In: GECCO ’10 Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 535–536 (2010)Google Scholar
  13. 13.
    Ghasemian, A., Zhang, P., Clauset, A., Moore, C., Peel, L.: Detectability thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev. X 6(3), 031,005 (2016)Google Scholar
  14. 14.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic graphs. In: International Symposium on Experimental Algorithms, pp. 436–448. Springer, Berlin (2010)CrossRefGoogle Scholar
  16. 16.
    Granell, C., Darst, R.K., Arenas, A., Fortunato, S., Gómez, S.: Benchmark model to assess community structure in evolving networks. Phys. Rev. E 92(1), 012,805 (2015)CrossRefGoogle Scholar
  17. 17.
    Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: International conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 176–183. IEEE, Piscataway (2010)Google Scholar
  18. 18.
    Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkX. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)Google Scholar
  19. 19.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Jdidia, M.B., Robardet, C., Fleury, E.: Communities detection and analysis of their dynamics in collaborative networks. In: 2007 2nd International Conference on Digital Information Management, vol. 2, pp. 744–749. IEEE, Piscataway (2007)Google Scholar
  21. 21.
    Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016,118 (2009)CrossRefGoogle Scholar
  22. 22.
    Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. CoRR abs/1710.04073 (2017). http://arxiv.org/abs/1710.04073
  23. 23.
    Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)CrossRefGoogle Scholar
  24. 24.
    Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web (WWW), pp. 685–694. ACM, New York (2008)Google Scholar
  25. 25.
    Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B (Stat Methodol.) 79(4), 1119–1141 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Matias, C., Rebafka, T., Villers, F.: Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks (2015)Google Scholar
  27. 27.
    Meunier, D., Lambiotte, R., Bullmore, E.T.: Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)CrossRefGoogle Scholar
  28. 28.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026,113 (2004)CrossRefGoogle Scholar
  31. 31.
    Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Peel, L., Clauset, A.: Detecting change points in the large-scale structure of evolving networks. CoRR abs/1403.0989 (2014). http://arxiv.org/abs/1403.0989
  33. 33.
    Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and community detection in networks. Sci. Adv. 3(5), e1,602,548 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4(1), 011,047 (2014)Google Scholar
  35. 35.
    Rossetti, G.: Rdyn: graph benchmark handling community dynamics. J. Complex Networks 5(6), 893–912 (2017).  https://doi.org/10.1093/comnet/cnx016 CrossRefGoogle Scholar
  36. 36.
    Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)CrossRefGoogle Scholar
  37. 37.
    Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PloS One 5(1), e8694 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Scholtes, I.: When is a network a network?: Multi-order graphical model selection in pathways and temporal networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1037–1046. ACM, New York (2017)Google Scholar
  41. 41.
    Sengupta, N., Hamann, M., Wagner, D.: Benchmark generator for dynamic overlapping communities in networks. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 415–424. IEEE, Piscataway (2017)Google Scholar
  42. 42.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS One 6(8), e23,176 (2011). http://dx.doi.org/10.1371/journal.pone.0023176CrossRefGoogle Scholar
  43. 43.
    Takaffoli, M., Sangi, F., Fagnan, J., Zaïane, O.R.: Modec-modeling and detecting evolutions of communities. In: 5th International Conference on Weblogs and Social Media (ICWSM), pp. 30–41. AAAI, Menlo Park (2011)Google Scholar
  44. 44.
    Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)CrossRefGoogle Scholar
  46. 46.
    Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: A bayesian approach toward finding communities and their evolutions in dynamic social networks. In: Proceedings of the International Conference on Data Mining, pp. 990–1001. SIAM, Philadelphia (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Lyon, UCBL/CNRSLyonFrance
  2. 2.Knowledge Discovery and Data Mining LabISTI-CNRPisaItaly

Personalised recommendations