Skip to main content

The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology

  • Chapter
  • First Online:
Book cover Evo-Devo: Non-model Species in Cell and Developmental Biology

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

All extant species are an outcome of nature’s “experiments” during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of “traditional” model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja K, Deb S (2018) Edible insects market size by product (beetles, caterpillars, grasshoppers, bees, wasps, ants, scale insects & true bugs), by application (flour, protein bars, snacks), industry analysis report, Regional Outlook (U.S., Belgium, Netherlands, UK, France, China, Thailand, Vietnam, Brazil, Mexico), application potential, price trends, competitive market share & forecast, 2018–2024

    Google Scholar 

  • Alexander DE (2018) A century and a half of research on the evolution of insect flight. Arthropod Struct Dev 47:322–327

    Article  PubMed  Google Scholar 

  • Andres JA, Larson EL, Bogdanowicz SM, Harrison RG (2013) Patterns of transcriptome divergence in the male accessory gland of two closely related species of field crickets. Genetics 193:501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aonuma H (2017) Chapter 20: Synthetic approaches for observing and measuring cricket behaviors. In: Horch HW, Mito T, Popadic A, Ohuchi H, Noji S (eds) The cricket as a model organism: development, regeneration and behaviour. Springer, New York

    Google Scholar 

  • Auerswald L, Lopata AL (2005) Insects – diversity and allergy. Curr Allergy Clin Immunol 18:58–60

    Google Scholar 

  • Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015) Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep 5:15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J (2011) Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 6:e17274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey NW, Veltsos P, Tan YF, Millar AH, Ritchie MG, Simmons LW (2013) Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus. G3 (Bethesda) 3:225–230

    Article  CAS  Google Scholar 

  • Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T (2013) Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 140:959–964

    Article  CAS  PubMed  Google Scholar 

  • Barry S, Nakamura T, Matsuoka Y, Straub C, Horch HW, Extavour CG (2019) Injecting Gryllus bimaculatus eggs. J Vis Exp (in press)

    Google Scholar 

  • Berdan EL, Blankers T, Waurick I, Mazzoni CJ, Mayer F (2016) A genes eye view of ontogeny: de novo assembly and profiling of the Gryllus rubens transcriptome. Mol Ecol Resour 16:1478–1490

    Article  CAS  PubMed  Google Scholar 

  • Bigelow RS (1962) Factors affecting developmental rates and diapause in field crickets. Evolution 16:396–406

    Article  Google Scholar 

  • Bilinski SM, Jaglarz MK, Tworzydło W (2017) The pole (germ) plasm in insect oocytes. In: Kloc M (ed) Results and problems in cell differentiation, oocytes, vol 63. Springer, New York, pp 103–126

    Google Scholar 

  • Blankers T, Oh KP, Bombarely A, Shaw KL (2018) The genomic architecture of a rapid island radiation: recombination rate variation, chromosome structure, and genome assembly of the Hawaiian Cricket Laupala. Genetics 209:1329–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland MJ, Rae AN, Vereijken JM, Meuwissen MPM, Fischer ARH, Boekel MAJSv, Rutherfurd SM, Gruppen H, Moughan PJ, Hendriks WH (2013) The future supply of animal-derived protein for human consumption. Trends Food Sci Technol 29:62–73

    Article  CAS  Google Scholar 

  • Braswell WE, Andres JA, Maroja LS, Harrison RG, Howard DJ, Swanson WJ (2006) Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 49:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Bretman A, Tregenza T (2005) Measuring polyandry in wild populations: a case study using promiscuous crickets. Mol Ecol 14:2169–2179

    Article  CAS  PubMed  Google Scholar 

  • Bridges CB, Morgan TH (1923) The third-chromosome group of mutant characters of Drosophila melanogaster. Carnegie Inst Wash Publ 327:1–251

    Google Scholar 

  • Bruce HS, Patel NH (2018) Insect wings and body wall evolved from ancient leg segments. bioRxiv, 244541

    Google Scholar 

  • Büning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman & Hall, London

    Book  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Heidelberg

    Book  Google Scholar 

  • Cinalli RM, Rangan P, Lehmann R (2008) Germ cells are forever. Cell 132:559–562

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danley PD, Mullen SP, Liu F, Nene V, Quackenbush J, Shaw KL (2007) A cricket gene index: a genomic resource for studying neurobiology, speciation, and molecular evolution. BMC Genomics 8:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    Article  CAS  PubMed  Google Scholar 

  • Demerec M (1950) Biology of Drosophila, Facsimile edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Denell R (2008) Establishment of Tribolium as a genetic model system and its early contributions to evo-devo. Genetics 180:1779–1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Deroy O, Reade B, Spence C (2015) The insectivore’s dilemma, and how to take the West out of it. Food Qual Prefer 44:44–55

    Article  Google Scholar 

  • Des Marteaux LE, McKinnon AH, Udaka H, Toxopeus J, Sinclair BJ (2017) Effects of cold-acclimation on gene expression in fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics 18:357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietrich S, Schubert FR, Lumsden A (1997) Control of dorsoventral pattern in the chick paraxial mesoderm. Development 124:3895–3908

    CAS  PubMed  Google Scholar 

  • Dong Y, Friedrich M (2005) Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 5:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donoughe S, Extavour CG (2016) Embryonic development of the cricket Gryllus bimaculatus. Dev Biol 411:140–156

    Article  CAS  PubMed  Google Scholar 

  • Donoughe S, Kim C, Extavour CG (2018) High-throughput live-imaging of embryos in microwell arrays using a modular specimen mounting system. Biol Open 7:bio031260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duboule D, Dolle P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel JE, Hoy RR (1999) Experience-dependent modification of ultrasound auditory processing in a cricket escape response. J Exp Biol 202:2797–2806

    CAS  PubMed  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) Oskar predates the evolution of germ plasm in insects. Curr Biol 22:2278–2283

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Donoughe S, Clarke DN, Extavour CG (2013) Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Curr Biol 23:835–842

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Akam ME (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Ferreira M, Ferguson JW (2010) Do Mediterranean crickets Gryllus bimaculatus De Geer (Orthoptera: Gryllidae) come from the Mediterranean? Large-scale phylogeography and regional gene flow. Bull Entomol Res 100:49–58

    Article  CAS  PubMed  Google Scholar 

  • Fisher HP, Pascual MG, Jimenez SI, Michaelson DA, Joncas CT, Quenzer ED, Christie AE, Horch HW (2018) De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: an invertebrate model for investigating adult central nervous system compensatory plasticity. PLoS One 13:e0199070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funato T, Kurabayashi D, Nara M, Aonuma H (2008) Switching mechanism of sensor-motor coordination through an oscillator network model. IEEE Trans Syst Man Cybern B Cybern 38:764–770

    Article  PubMed  Google Scholar 

  • Funato T, Nara M, Kurabayashi D, Ashikaga M, Aonuma H (2011) A model for group-size-dependent behaviour decisions in insects using an oscillator network. J Exp Biol 214:2426–2434

    Article  PubMed  Google Scholar 

  • Geer CD (1773) Mémoires pour servir a l’histoire des insectes. Pierre Hesselberg, Stockholm

    Google Scholar 

  • Giribet G, Edgecombe GD (2013) The Arthropoda: a phylogenetic framework. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution – molecules, development, morphology. Springer, New York, pp 17–40

    Chapter  Google Scholar 

  • Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100

    Article  CAS  PubMed  Google Scholar 

  • Goltsev Y, Hsiong W, Lanzaro G, Levine M (2004) Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 275:435–446

    Article  CAS  PubMed  Google Scholar 

  • Goodman WG (1989) Chitin: a magic bullet? The Food Insects Newsletter 2

    Google Scholar 

  • Gould JL, Grould CG (1995) The honey bee. Scientific American Library, New York

    Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367–378

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Halloran A, Hanboonsong Y, Roos N, Bruun S (2017) Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod 156:83–94

    Article  Google Scholar 

  • Hamada Y, Bando T, Nakamura T, Ishimaru Y, Mito T, Noji S, Tomioka K, Ohuchi H (2015) Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus. Development 142:2916–2927

    Article  CAS  PubMed  Google Scholar 

  • Hanboonsong Y, Jamjanya T, Durst PB (2013) Six-legged livestock: edible insect farming, collection and marketing in Thailand. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok

    Google Scholar 

  • Handler AM, McCombs SD, Fraser MJ, Saul SH (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 95:7520–7525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey TH, Velez MI, Butterfield NJ (2012) Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proc Natl Acad Sci USA 109:1589–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He ZB, Cao YQ, Yin YP, Wang ZK, Chen B, Peng GX, Xia YX (2006) Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Dev Growth Differ 48:439–445

    Article  CAS  PubMed  Google Scholar 

  • Hedwig B (2017) Chapter 19: Trackball systems for analysing cricket phonotaxis. In: Horch HW, Mito T, Popadic A, Ohuchi H, Noji S (eds) The cricket as a model organism: development, regeneration and behaviour. Springer, New York

    Google Scholar 

  • Hedwig B, Poulet JF (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430:781–785

    Article  CAS  PubMed  Google Scholar 

  • Heffer A, Xiang J, Pick L (2013) Variation and constraint in Hox gene evolution. Proc Natl Acad Sci USA 110:2211–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horch HW, Liu J, Mito T, Popadic A, Watanabe T (2017a) Chapter 21: Protocols in the cricket. In: Horch HW, Mito T, Popadic A, Ohuchi H, Noji S (eds) The cricket as a model organism: development, regeneration and behaviour. Springer, New York, pp 327–370

    Chapter  Google Scholar 

  • Horch HW, Mito T, Popadic A, Ohuchi H, Noji S (2017b) The cricket as a model organism: development, regeneration and behaviour. Springer, New York, p 376

    Book  Google Scholar 

  • Huang X, Ma J, Qin X, Tu X, Cao G, Wang G, Nong X, Zhang Z (2017) Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Sci Rep 7:8655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber F, Moore TE, Loher W (1989) Cricket behavior and neurobiology. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Huis Av, Itterbeeck JV, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome, p 201

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhn J, James AA (2006) oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol Biol 15:363–372

    Article  CAS  PubMed  Google Scholar 

  • Juhn J, Marinotti O, Calvo E, James AA (2008) Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus. Insect Mol Biol 17:545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kainz F (2009) Cell communication during patterning: Notch and FGF signalling in Gryllus bimaculatus and their role in segmentation. Department of Zoology, University of Cambridge, Cambridge, p 161

    Google Scholar 

  • Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Delta/Notch signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Chen X, Zhou Y, Liu B, Zheng W, Li R, Wang J, Yu J (2004) The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proc Natl Acad Sci USA 101:17611–17615

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawabata K, Fujii T, Aonuma H, Suzuki T, Ashikaga M, Ota J, Asama H (2012) A neuromodulation model of behavior selection in the fighting behavior of male crickets. Robot Auton Syst 60:707–713

    Article  Google Scholar 

  • Kijimoto T, Pespeni M, Beckers O, Moczek AP (2013) Beetle horns and horned beetles: emerging models in developmental evolution and ecology. Wiley Interdiscip Rev Dev Biol 2:405–418

    Article  CAS  PubMed  Google Scholar 

  • Kim IW, Markkandan K, Lee JH, Subramaniyam S, Yoo S, Park J, Hwang JS (2016) Transcriptome profiling and in silico analysis of the antimicrobial peptides of the grasshopper oxya chinensis sinuosa. J Microbiol Biotechnol 26:1863–1870

    Article  CAS  PubMed  Google Scholar 

  • Kim-Ha J, Smith JL, Macdonald PM (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23–35

    Article  CAS  PubMed  Google Scholar 

  • Kleespies RG, Tidona CA, Darai G (1999) Characterization of a new iridovirus isolated from crickets and investigations on the host range. J Invertebr Pathol 73:84–90

    Article  CAS  PubMed  Google Scholar 

  • Kochi Y, Miyashita A, Tsuchiya K, Mitsuyama M, Sekimizu K, Kaito C (2016) A human pathogenic bacterial infection model using the two-spotted cricket, Gryllus bimaculatus. FEMS Microbiol Lett 363:fnw163

    Article  PubMed  CAS  Google Scholar 

  • Kochi Y, Matsumoto Y, Sekimizu K, Kaito C (2017) Two-spotted cricket as an animal infection model of human pathogenic fungi. Drug Discov Ther 11:259–266

    Article  CAS  PubMed  Google Scholar 

  • Krause G (1939) Die Eitypen der Insekten. Biol Zentralbl 50:495–536

    Google Scholar 

  • Kuhnlein HV, Erasmus B, Spigelski D (2009) Indigenous Peoples’ food systems: the many dimensions of culture, diversity and environment for nutrition and health. Food and Agriculture Organization of the United Nations Center for Indigenous Peoples’ Nutrition and Environment, Rome

    Google Scholar 

  • Lehmann R, Nüsslein-Volhard C (1986) Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47:144–152

    Article  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  PubMed  Google Scholar 

  • Linz DM, Tomoyasu Y (2018) Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proc Natl Acad Sci U S A 115:E658–E667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PZ, Kaufman TC (2005) Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev 7:629–646

    Article  PubMed  Google Scholar 

  • Lochmatter T, Roduit P, Cianci CM, Correll N (2008) SwisTrack – a flexible open source tracking software for multi-agent systems. In: IEEE/RSJ international conference on intelligent robots and systems, Acropolis Convention Center, Nice

    Google Scholar 

  • Lohs-Schardin M, Cremer C, Nusslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255

    Article  CAS  PubMed  Google Scholar 

  • Lynch JA, Özüak O, Khila A, Abouheif E, Desplan C, Roth S (2011) The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the Holometabola. PLoS Genet 7:e1002029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Yu J, Kang L (2006) LocustDB: a relational database for the transcriptome and biology of the migratory locust (Locusta migratoria). BMC Genomics 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto CS, Shidara H, Matsuda K, Nakamura T, Mito T, Matsumoto Y, Oka K, Ogawa H (2013) Targeted gene delivery in the cricket brain, using in vivo electroporation. J Insect Physiol 59:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Mayhew PJ (2007) Why are there so many insect species? Perspectives from fossils and phylogenies. Biol Rev Camb Philos Soc 82:425–454

    Article  PubMed  Google Scholar 

  • Meng X, Zhu F, Chen K (2017) Silkworm: a promising model organism in life science. J Insect Sci 17:97, 1–6

    PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AA (2013) EDNA. The Fossil Insect Database. https://fossilinsectdatabase.co.uk/

  • Mito T, Noji S (2008) The two-spotted cricket Gryllus bimaculatus: an emerging model for developmental and regeneration studies. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.emo110

    Article  Google Scholar 

  • Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S (2005) Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132:2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Nakamura T, Bando T, Ohuchi H, Noji S (2011) The advent of RNA interference in entomology. Entomol Sci 14:1–8

    Article  Google Scholar 

  • Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130

    Article  CAS  PubMed  Google Scholar 

  • Mizunami M, Matsumoto Y (2017a) Chapter 9: Leaning and memory. In: Horch HW, Mito T, Popadic A, Ohuchi H, Noji S (eds) The cricket as a model organism: development, regeneration and behaviour. Springer, New York, pp 129–140

    Chapter  Google Scholar 

  • Mizunami M, Matsumoto Y (2017b) Roles of octopamine and dopamine neurons for mediating appetitive and aversive signals in Pavlovian conditioning in crickets. Front Physiol 8:1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Sakura M, Ashikaga M, Aonuma H, Chiba R, Ota J (2012) Model of a sensory–behavioral relation mechanism for aggressive behavior in crickets. Robot Auton Syst 60:700–706

    Article  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagaki BJ, Defoliart GR (1991) Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. J Econ Entomol 84:891–896

    Article  Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008a) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S (2008b) EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph. Dev Biol 319:46–55

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yoshizaki M, Ogawa S, Okamoto H, Shinmyo Y, Bando T, Ohuchi H, Noji S, Mito T (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol 20:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Neubauer FB, MacLean JN (2010) Calcium imaging in neuroscience. In: Encycopedia of Life Sciences (ELS). John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  • Nicholson DB, Ross AJ, Mayhew PJ (2014) Fossil evidence for key innovations in the evolution of insect diversity. Proc Biol Sci 281:20141823

    Article  PubMed  PubMed Central  Google Scholar 

  • Nickle DA, Walker TJ (1974) A morphological key to field crickets of southeastern United States (Orthoptera: Gryllidae: Gryllus). Fla Entomol 57:8–12

    Article  Google Scholar 

  • Niwa N, Saitoh M, Ohuchi H, Yoshioka H, Noji S (1997) Correlation between distal-less expression patterns and structures of appendages in development of the two-spotted cricket, Gryllus bimaculatus. Zool Sci 14:115–125

    Article  Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Noldus LP, Spink AJ, Tegelenbosch RA (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33:398–414

    Article  CAS  PubMed  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus EF (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • Ogawa H, Miller JP (2017) Chapter 18: Optical recording methods: how to measure neural activities with calcium imaging. In: Horch HW, Mito T, Popadic A, Ohuchi H, Noji S (eds) The cricket as a model organism: development, regeneration and behaviour. Springer, New York

    Google Scholar 

  • Oldroyd BP, Thompson GJ (2006) Behavioural genetics of the honey bee Apis mellifera. Adv Insect Physiol 33:1–49

    Article  CAS  Google Scholar 

  • Oonincx DG, de Boer IJ (2012) Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. PLoS One 7:e51145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5:e14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otte D, Cade W (1984) African crickets (Gryllidae). 5. East and South African species of Modicogryllus and several related genera (Gryllinae, Modicogryllini). Proc Acad Natl Sci Phila 136:67–97

    Google Scholar 

  • Palacios-Gimenez OM, Bardella VB, Lemos B, Cabral-de-Mello DC (2018) Satellite DNAs are conserved and differentially transcribed among Gryllus cricket species. DNA Res 25:137–147

    Article  PubMed  CAS  Google Scholar 

  • Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. PNAS 94:5162–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol 44:445–487

    Article  CAS  PubMed  Google Scholar 

  • Pauchet Y, Wielsch N, Wilkinson PA, Sakaluk SK, Svatos A, ffrench-Constant RH, Hunt J, Heckel DG (2015) What’s in the gift? Towards a molecular dissection of nuptial feeding in a cricket. PLoS One 10:e0140191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C (2007) The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol 8(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Paydar S, Doan CA, Jacobs GA (1999) Neural mapping of direction and frequency in the cricket cercal sensory system. J Neurosci 19:1771–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pener MP (2016) Allergy to crickets: a review. J Orthop Res 25:91–95

    Article  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432

    Article  CAS  PubMed  Google Scholar 

  • Popov AV, Shuvalov VF (1977) Phonotactic behavior of crickets. J Comp Physiol 119:111–126

    Article  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Liu F, Lu H, Huang Y (2017) Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica. Mol Ecol Resour 17:381–392

    Article  CAS  PubMed  Google Scholar 

  • Quan H, Lynch JA (2016) The evolution of insect germline specification strategies. Curr Opin Insect Sci 13:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravindran V, Blair R (1993) Feed resources for poultry production in Asia and the Pacific. III. Animal protein sources. Worlds Poult Sci J 49:219–235

    Article  Google Scholar 

  • Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363–371

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JA, Hand SC (2009) Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. J Exp Biol 212:2075–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rheinlaender J, Blätgen G (1982) The precision of auditory lateralization in the cricket, Gryllus bimaculatus. Physiol Entomol 7:209–218

    Article  Google Scholar 

  • Ribeiro JC, Cunha LM, Sousa-Pinto B, Fonseca J (2018) Allergic risks of consuming edible insects: a systematic review. Mol Nutr Food Res 62:1700030

    Article  CAS  Google Scholar 

  • Ritzmann RE, Quinn RD, Watson JT, Zill SN (2000) Insect walking and biorobotics: a relationship with mutual benefits. Bioscience 50:23–33

    Article  Google Scholar 

  • Ronco M, Uda T, Mito T, Minelli A, Noji S, Klingler M (2008) Antenna and all gnathal appendages are similarly transformed by homothorax knock-down in the cricket Gryllus bimaculatus. Dev Biol 313:80–92

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  • Sander K (1997) Pattern formation in insect embryogenesis: the evolution of concepts and mechanisms. Int J Insect Morphol Embryol 25:349–367

    Article  Google Scholar 

  • Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J 20:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S (2004) piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 46:343–349

    Article  CAS  PubMed  Google Scholar 

  • Simmons LW (1986) Female choice in the field cricket Gryllus bimaculatus (De Geer). Anim Behav 34:1463–1470

    Article  Google Scholar 

  • Simmons LW (1987) Female choice contributes to offspring fitness in the field cricket, Gryllus bimaculatus (De Geer). Behav Ecol Sociobiol 21:313–321

    Article  Google Scholar 

  • Smith JL, Wilson JE, Macdonald PM (1992) Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70:849–859

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff A (1966) The genetics of Tribolium and related species. Academic Press, New York

    Google Scholar 

  • Sokoloff A (1972) The biology of Tribolium with special emphasis on genetic aspects, vol 1. Clarendon, Oxford

    Google Scholar 

  • Sokoloff A (1974) The biology of Tribolium with special emphasis on genetic aspects, vol 2. Clarendon, Oxford

    Google Scholar 

  • Sokoloff A (1977) The biology of Tribolium with special emphasis on genetic aspects, vol 3. Clarendon, Oxford

    Google Scholar 

  • Srinroch C, Srisomsap C, Chokchaichamnankit D, Punyarit P, Phiriyangkul P (2015) Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem 184:160–166

    Article  CAS  PubMed  Google Scholar 

  • Stout JF, DeHaan CG, McGhee RW (1983) Attractiveness of the male Acheta domesticus calling song to females. J Comp Physiol 153:509–521

    Article  Google Scholar 

  • Szelei J, Woodring J, Goettel MS, Duke G, Jousset FX, Liu KY, Zadori Z, Li Y, Styer E, Boucias DG, Kleespies RG, Bergoin M, Tijssen P (2011) Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J Invertebr Pathol 106:394–399

    Article  CAS  PubMed  Google Scholar 

  • Taufek NM, Aspani F, Muin H, Raji AA, Razak SA, Alias Z (2016) The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus). Fish Physiol Biochem 42:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Toth AL, Rehan SM (2017) Molecular evolution of insect sociality: an eco-evo-devo perspective. Annu Rev Entomol 62:419–442

    Article  CAS  PubMed  Google Scholar 

  • Toxopeus J, Des Marteaux LE, Sinclair BJ (2019) How crickets become freeze tolerant: the transcriptomic underpinnings of acclimation in Gryllus veletis. Comp Biochem Physiol Part D Genomics Proteomics 29:55–66

    Article  CAS  PubMed  Google Scholar 

  • Tregenza T, Wedell N (1998) Benefits of multiple mates in the cricket Gryllus bimaculatus. Evolution 52:1726–1730

    Article  PubMed  Google Scholar 

  • Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415:71–73

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    Article  CAS  PubMed  Google Scholar 

  • Tschuch G (1976) Der Einfluss synthetischer Gesänge auf die Weibchen von Gryllus bimaculatus De Geer. Zool Jahrb Abt allgemeine Zool Physiol Tiere 80:383–388

    Google Scholar 

  • Vaccari NE, Edgecombe GD, Escudero C (2004) Cambrian origins and affinities of an enigmatic fossil group of arthropods. Nature 430:554–557

    Article  CAS  PubMed  Google Scholar 

  • Vellichirammal NN, Zera AJ, Schilder RJ, Wehrkamp C, Riethoven J-JM, Brisson JA (2014) De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. PLoS One 9:e82129

    Article  CAS  Google Scholar 

  • Wang Y, Jehle JA (2009) Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic. J Invertebr Pathol 101:187–193

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Bai Y-Y, Li J-H, Zhang C-X (2004) Nutritional value of the field cricket (Gryllus testaceus Walker). Entomol Sin 11:275–283

    CAS  Google Scholar 

  • Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, Guo X, Guo W, Wang X, Zhang Y, Yang M, Hao S, Chen B, Ma Z, Yu D, Xiong Z, Zhu Y, Fan D, Han L, Wang B, Chen Y, Wang J, Yang L, Zhao W, Feng Y, Chen G, Lian J, Li Q, Huang Z, Yao X, Lv N, Zhang G, Li Y, Wang J, Wang J, Zhu B, Kang L (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Ochiai H, Sakuma T, Horch HW, Hamaguchi N, Nakamura T, Bando T, Ohuchi H, Yamamoto T, Noji S, Mito T (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017

    Article  PubMed  CAS  Google Scholar 

  • Wenzel B, Hedwig B (1999) Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J Exp Biol 202:2203–2216

    CAS  PubMed  Google Scholar 

  • Werren JH, Loehlin DW (2009) The parasitoid wasp Nasonia: an emerging model system with haploid male genetics. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.emo134

    Google Scholar 

  • Wheeler QD (1990) Insect diversity and cladistic constraints. Ann Entomol Soc Am 83:1031–1047

    Article  Google Scholar 

  • Wilkinson DG (1992) In situ hybridization: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    Article  PubMed  Google Scholar 

  • Xu X, Brechbiel JL, Gavis ER (2013) Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires rumpelstiltskin and the germ plasm organizer oskar. J Neurosci 33:14791–14800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura A (2005) Karyotypes of two American field crickets: Gryllus rubens and Gryllus sp. (Orthoptera: Gryllidae). Entomol Sci 8:219–222

    Article  Google Scholar 

  • Zeng V, Extavour CG (2012) ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. Database. https://doi.org/10.1093/database/bas048

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng V, Ewen-Campen B, Horch HW, Roth S, Mito T, Extavour C (2013) Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus. PLoS One 8:e61479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Shinmyo Y, Hirose A, Mito T, Inoue Y, Ohuchi H, Loukeris TG, Eggleston P, Noji S (2002) Extrachromosomal transposition of the transposable element Minos in embryos of the cricket Gryllus bimaculatus. Dev Growth Differ 44:409–417

    Article  CAS  PubMed  Google Scholar 

  • Zhang XG, Maas A, Haug JT, Siveter DJ, Waloszek D (2010) A eucrustacean metanauplius from the lower Cambrian. Curr Biol 20:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang X, Qiu Z, Huang Y (2018) De novo assembly and characterization of the Xenocatantops brachycerus transcriptome. Int J Mol Sci 19:520

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Extavour lab members Aracely Newton and Maitreyi Upadhyay for helpful comments and Leo Blondel for technical support on the manuscript. This work was supported by Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra G. Extavour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, A., Extavour, C.G. (2019). The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_8

Download citation

Publish with us

Policies and ethics