Advertisement

Sex Determination, Sexual Development, and Sex Change in Slipper Snails

  • Maryna P. Lesoway
  • Jonathan Q. HenryEmail author
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 68)

Abstract

Sex determination and sexual development are highly diverse and controlled by mechanisms that are extremely labile. While dioecy (separate male and female functions) is the norm for most animals, hermaphroditism (both male and female functions within a single body) is phylogenetically widespread. Much of our current understanding of sexual development comes from a small number of model systems, limiting our ability to make broader conclusions about the evolution of sexual diversity. We present the calyptraeid gastropods as a model for the study of the evolution of sex determination in a sequentially hermaphroditic system. Calyptraeid gastropods, a group of sedentary, filter-feeding marine snails, are sequential hermaphrodites that change sex from male to female during their life span (protandry). This transition includes resorption of the penis and the elaboration of female genitalia, in addition to shifting from production of spermatocytes to oocytes. This transition is typically under environmental control and frequently mediated by social interactions. Males in contact with females delay sex change to transition at larger sizes, while isolated males transition more rapidly and at smaller sizes. This phenomenon has been known for over a century; however, the mechanisms that control the switch from male to female are poorly understood. We review here our current understanding of sexual development and sex determination in the calyptraeid gastropods and other molluscs, highlighting our current understanding of factors implicated in the timing of sex change and the potential mechanisms. We also consider the embryonic origins and earliest expression of the germ line and the effects of environmental contaminants on sexual development.

Notes

Acknowledgements

The authors acknowledge the invaluable support of the National Science Foundation (NSF) and were supported by NSF grant IOS-1558061 and NSF EDGE IOS-1827533 to JQH (JJH). MPL was supported by a postdoctoral fellowship from the Fonds de recherche du Québec-Nature et technologies (FRQ-NT), and thanks the Society for Developmental Biology for an Emerging Models Grant.

References

  1. André A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM (2019) The retinoic acid receptor (RAR) in molluscs: function, evolution and endocrine disruption insights. Aquat Toxicol 208:80–89.  https://doi.org/10.1016/j.aquatox.2019.01.002 CrossRefPubMedGoogle Scholar
  2. Auld JR, Jarne P (2016) Sex and recombination in snails. In: Kliman RM (ed) Encyclopedia of evolutionary biology. Academic, Oxford, pp 49–60.  https://doi.org/10.1016/B978-0-12-800049-6.00149-9 CrossRefGoogle Scholar
  3. Babonis LS, Martindale MQ (2017) Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc B Biol Sci 372(1713):20150477.  https://doi.org/10.1098/rstb.2015.0477 CrossRefGoogle Scholar
  4. Bacci G (1951) L’ermafrodismo di Calyptraea chinensis L. e di altri Calyptraeidae. Pubbl Stn Zool Napoli 23(1):66–90Google Scholar
  5. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T-L, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, The tree of sex consortium (2014) Sex determination: why so many ways of doing it? PLoS Biol 12(7):e1001899.  https://doi.org/10.1371/journal.pbio.1001899 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Batista RM, Castro IB, Fillmann G (2016) Imposex and butyltin contamination still evident in Chile after TBT global ban. Sci Total Environ 566-567:446–453.  https://doi.org/10.1016/j.scitotenv.2016.05.039 CrossRefPubMedGoogle Scholar
  7. Bauer RT (2006) Same sexual system but variable sociobiology: evolution of protandric simultaneous hermaphroditism in Lysmata shrimps. Integr Comp Biol 46(4):430–438.  https://doi.org/10.1093/icb/icj036 CrossRefPubMedGoogle Scholar
  8. Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, BerkeleyGoogle Scholar
  9. Bettin C, Oehlmann J, Stroben E (1996) TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level. Helgoländer Meeresun 50(3):299–317.  https://doi.org/10.1007/bf02367105 CrossRefGoogle Scholar
  10. Beukeboom LW, Perrin N (2014) The evolution of sex determination. Oxford University Press, New YorkCrossRefGoogle Scholar
  11. Blaber SJ (1970) The occurrence of a penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus (L.). J Molluscan Stud 39(2–3):231–233CrossRefGoogle Scholar
  12. Brante A, Quiñones A, Silva F (2016) The relationship between sex change and reproductive success in a protandric marine gastropod. Sci Rep 6(29439):1–10.  https://doi.org/10.1038/srep29439 CrossRefGoogle Scholar
  13. Breton S, Capt C, Guerra D, Stewart D (2018) Sex-determining mechanisms in bivalves. In: Leonard J (ed) Transitions between sexual systems. Springer, Cham.  https://doi.org/10.1007/978-3-319-94139-4_6 CrossRefGoogle Scholar
  14. Broquet T, Barranger A, Billard E, Bestin A, Berger R, Honnaert G, Viard F (2015) The size advantage model of sex allocation in the protandrous sex-changer Crepidula fornicata: role of the mating system, sperm storage, and male mobility. Am Nat 186(3):404–420.  https://doi.org/10.1086/682361 CrossRefPubMedGoogle Scholar
  15. Bui LT, Ivers NA, Ragsdale EJ (2018) A sulfotransferase dosage-dependently regulates mouthpart polyphenism in the nematode Pristionchus pacificus. Nat Commun 9(1):4119.  https://doi.org/10.1038/s41467-018-05612-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bull JJ (1983) Evolution of sex determining mechanisms. The Benjamin/Cummings, Menlo Park, CAGoogle Scholar
  17. Bull J, Vogt R (1979) Temperature-dependent sex determination in turtles. Science 206(4423):1186–1188.  https://doi.org/10.1126/science.505003 CrossRefPubMedGoogle Scholar
  18. Burtis KC, Baker BS (1989) Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56(6):997–1010.  https://doi.org/10.1016/0092-8674(89)90633-8 CrossRefPubMedGoogle Scholar
  19. Buston P (2003) Social hierarchies: size and growth modification in clownfish. Nature 424(6945):145–146PubMedCrossRefGoogle Scholar
  20. Cahill AE, Juman AR, Pellman-Isaacs A, Bruno WT (2015) Physical and chemical interactions with conspecifics mediate sex change in a protandrous gastropod Crepidula fornicata. Biol Bull 229(3):276–281.  https://doi.org/10.1086/BBLv229n3p276 CrossRefPubMedGoogle Scholar
  21. Capel B (2017) Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 18:675.  https://doi.org/10.1038/nrg.2017.60 CrossRefPubMedGoogle Scholar
  22. Carrillo-Baltodano A, Collin R (2015) Crepidula slipper limpets alter sex change in response to physical contact with conspecifics. Biol Bull 229(3):232–242.  https://doi.org/10.1086/BBLv229n3p232 CrossRefPubMedGoogle Scholar
  23. Castro LFC, Lima D, Machado A, Melo C, Hiromori Y, Nishikawa J, Nakanishi T, Reis-Henriques MA, Santos MM (2007) Imposex induction is mediated through the Retinoid X Receptor signalling pathway in the neogastropod Nucella lapillus. Aquat Toxicol 85(1):57–66.  https://doi.org/10.1016/j.aquatox.2007.07.016 CrossRefPubMedGoogle Scholar
  24. Chaparro OR, Bahamondes-Rojas I, Vergara AM, Rivera AA (1998) Histological characteristics of the foot and locomotory activity of Crepidula dilatata Lamarck (Gastropoda: Calyptraeidae) in relation to sex changes. J Exp Mar Biol Ecol 223(1):77–91CrossRefGoogle Scholar
  25. Chaparro OR, Pereda SV, Bahamondes-Rojas I (2001) Effects of protandric sex change on radula, pedal morphology, and mobility in Crepidula fecunda (Gastropoda: Calyptraeidae). NZ J Mar Fresh 35(5):881–890CrossRefGoogle Scholar
  26. Charnov EL (1982) The theory of sex allocation. Monographs in population biology, vol 18. Princeton University Press, Princeton, NJGoogle Scholar
  27. Cho S-J, Vallès Y, Weisblat DA (2013) Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech Helobdella. Mol Biol Evol 31(2):341–354.  https://doi.org/10.1093/molbev/mst201 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chong T, Collins JJ, Brubacher JL, Zarkower D, Newmark PA (2013) A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite. Nat Commun 4:1814.  https://doi.org/10.1038/ncomms2811 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coe WR (1935) Sexual phases in prosobranch mollusks of the genus Crepidula. Science 81(2110):570–572PubMedCrossRefGoogle Scholar
  30. Coe WR (1936) Sexual phases in Crepidula. J Exp Zool 72(3):455–477.  https://doi.org/10.1002/jez.1400720306 CrossRefGoogle Scholar
  31. Coe WR (1938a) Conditions influencing change of sex in mollusks of the genus Crepidula. J Exp Zool 77(3):401–424CrossRefGoogle Scholar
  32. Coe WR (1938b) Influence of association on the sexual phases of gastropods having protandric consecutive sexuality. Biol Bull 75(2):274–285CrossRefGoogle Scholar
  33. Coe WR (1942) Influence of natural and experimental conditions in determining shape of shell and rate of growth in gastropods of the genus Crepidula. J Morphol 71(1):35–51CrossRefGoogle Scholar
  34. Coe WR (1943) Sexual differentiation in mollusks. I. Pelecypods. Q Rev Biol 18(2):154–164.  https://doi.org/10.1086/394673 CrossRefGoogle Scholar
  35. Collin R (1995) Sex, size, and position: a test of models predicting size at sex change in the protandrous gastropod Crepidula fornicata. Am Nat 146(6):815–831CrossRefGoogle Scholar
  36. Collin R (2000) Sex change, reproduction, and development of Crepidula adunca and Crepidula lingulata (Gastropoda: Calyptraeidae). Veliger 43(1):24–33Google Scholar
  37. Collin R (2006) Sex ratio, life-history invariants, and patterns of sex change in a family of protandrous gastropods. Evolution 60(4):735–745PubMedCrossRefGoogle Scholar
  38. Collin R (2013) Phylogenetic patterns and phenotypic plasticity of molluscan sexual systems. Integr Comp Biol 53(4):723–735.  https://doi.org/10.1093/icb/ict076 CrossRefPubMedGoogle Scholar
  39. Collin R, McLellan M, Gruber K, Bailey-Jourdain C (2005) Effects of conspecific associations on size at sex change in three species of calyptraeid gastropods. Mar Ecol Prog Ser 293:89–97CrossRefGoogle Scholar
  40. Conklin EG (1897) The embryology of Crepidula: a contribution to the cell lineage and early development of some marine gasteropods. J Morphol 13(1):1–226CrossRefGoogle Scholar
  41. Conklin EG (1902) Karyokinesis and cytokinesis in the maturation, fertilization and cleavage of Crepidula and other gasteropoda. J Acad Nat Sci 12:1–121Google Scholar
  42. Dannenberg LC, Seaver EC (2018) Regeneration of the germline in the annelid Capitella teleta. Dev Biol 440(2):74–87.  https://doi.org/10.1016/j.ydbio.2018.05.004 CrossRefPubMedGoogle Scholar
  43. Dill KK, Seaver EC (2008) Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp. I. Dev Genes Evol 218(9):453–463PubMedCrossRefGoogle Scholar
  44. Dupont L, Richard J, Paulet YM, Thouzeau G, Viard F (2006) Gregariousness and protandry promote reproductive insurance in the invasive gastropod Crepidula fornicata: evidence from assignment of larval paternity. Mol Ecol 15(10):3009–3021.  https://doi.org/10.1111/j.1365-294X.2006.02988.x CrossRefPubMedGoogle Scholar
  45. Eernisse DJ (1988) Reproductive patterns in six species of Lepidochitona (Mollusca: Polyplacophora) from the Pacific Coast of North America. Biol Bull 174(3):287–302.  https://doi.org/10.2307/1541955 CrossRefGoogle Scholar
  46. Evans SM, Leksono T, McKinnell PD (1995) Tributyltin pollution: a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Mar Pollut Bull 30(1):14–21.  https://doi.org/10.1016/0025-326X(94)00181-8 CrossRefGoogle Scholar
  47. Ewen-Campen B, Schwager EE, Extavour CGM (2010) The molecular machinery of germ line specification. Mol Reprod Dev 77(1):3–18.  https://doi.org/10.1002/mrd.21091 CrossRefPubMedGoogle Scholar
  48. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130(24):5869–5884.  https://doi.org/10.1242/dev.00804 CrossRefPubMedGoogle Scholar
  49. Fabioux C, Huvet A, Lelong C, Robert R, Pouvreau S, Daniel JY, Minguant C, Le Pennec M (2004) Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem Biophys Res Commun 320(2):592–598.  https://doi.org/10.1016/j.bbrc.2004.06.009 CrossRefPubMedGoogle Scholar
  50. Féral C, Le Gall S (1983) The influence of a pollutant factor (tributyltin) on the neuroendocrine mechanisms responsible for the occurrence of a penis in the females of Ocenebra erinacea. In: International minisymposium on molluscan endocrinology. North Holland, AmsterdamGoogle Scholar
  51. Féral C, Le Gall S, Martin MC, Lengronne C (1987) The neuroendocrine mechanism responsible for sexual inversion of the gonad in the protandrous hermaphroditic mollusk, Crepidula fornicata L. Gen Comp Endocr 65(3):432–438PubMedCrossRefGoogle Scholar
  52. Fischer AHL, Arendt D (2013) Mesoteloblast-like mesodermal stem cells in the polychaete annelid Platynereis dumerilii (Nereididae). J Exp Zool B Mol Dev Evol 320(2):94–104.  https://doi.org/10.1002/jez.b.22486 CrossRefPubMedGoogle Scholar
  53. García-Souto D, Alonso-Rubido S, Costa D, Eirín-López JM, Rolán-Álvarez E, Faria R, Galindo J, Pasantes JJ (2018) Karyotype characterization of nine periwinkle species (Gastropoda, Littorinidae). Genes 9(11):517PubMedCentralCrossRefPubMedGoogle Scholar
  54. Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44(2):189–208.  https://doi.org/10.1086/406066 CrossRefPubMedGoogle Scholar
  55. Giani VC, Yamaguchi E, Boyle MJ, Seaver EC (2011) Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo 2(1):10.  https://doi.org/10.1186/2041-9139-2-10 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gibbs PE, Bryan GW, Pascoe PL, Burt GR (1987) The use of the dog-whelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination. J Mar Biol Assoc UK 67(3):507–523.  https://doi.org/10.1017/S0025315400027260 CrossRefGoogle Scholar
  57. Gline SE, Nakamoto A, Cho S-J, Chi C, Weisblat DA (2011) Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex. Dev Biol 353(1):120–133.  https://doi.org/10.1016/j.ydbio.2011.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Goldberg ED (1986) TBT: an environmental dilemma. Environ Sci Policy Sustain Dev 28(8):17–44.  https://doi.org/10.1080/00139157.1986.9928814 CrossRefGoogle Scholar
  59. Gooding MP, Wilson VS, Folmar LC, Marcovich DT, LeBlanc GA (2003) The biocide tributyltin reduces the accumulation of testosterone as fatty acid esters in the mud snail (Ilyanassa obsoleta). Environ Health Persp 111(4):426–430.  https://doi.org/10.1289/ehp.5779 CrossRefGoogle Scholar
  60. Gould HN (1917a) Studies on sex in the hermaphrodite mollusc Crepidula plana I. History of the sexual cycle. J Exp Zool 23(1):1–69CrossRefGoogle Scholar
  61. Gould HN (1917b) Studies on sex in the hermaphrodite mollusk Crepidula plana. II. Influence of the environment on sex. J Exp Zool 23(1):225–250CrossRefGoogle Scholar
  62. Gould HN (1919) Studies on sex in the hermaphrodite mollusc Crepidula plana. III. Transference of the male-producing stimulus through sea-water. J Exp Zool 29:113–120CrossRefGoogle Scholar
  63. Gould H (1952) Studies on sex in the hermaphrodite mollusk Crepidula plana: IV. Internal and external factors influencing growth and sex development. J Exp Zool 119:93–163.  https://doi.org/10.1002/jez.1401190107 CrossRefGoogle Scholar
  64. Guallart J, Calvo M, Acevedo I, Templado J (2013) Two-way sex change in the endangered limpet Patella ferruginea (Mollusca, Gastropoda). Invertebr Reprod Dev 57(3):247–253CrossRefGoogle Scholar
  65. Guo X, Hedgecock D, Hershberger WK, Cooper K, Allen SKJ (1998) Genetic determinants of protandric sex in the Pacific oyster, Crassostrea gigas Thunberg. Evolution 52(2):394–402.  https://doi.org/10.1111/j.1558-5646.1998.tb01640.x CrossRefPubMedGoogle Scholar
  66. Haag ES, Doty AV (2005) Sex determination across evolution: connecting the dots. PLoS Biol 3(1):e21.  https://doi.org/10.1371/journal.pbio.0030021 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Handberg-Thorsager M, Gutierrez-Mazariegos J, Arold ST, Kumar Nadendla E, Bertucci PY, Germain P, Tomançak P, Pierzchalski K, Jones JW, Albalat R, Kane MA, Bourguet W, Laudet V, Arendt D, Schubert M (2018) The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. Sci Adv 4(2):eaao1261.  https://doi.org/10.1126/sciadv.aao1261 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Haszprunar G, Schaefer K (1996) Anatomy and phylogenetic significance of Micropilina arntzi (Mollusca, Monoplacophora, Micropilinidae Fam. Nov.). Acta Zool 77(4):315–334.  https://doi.org/10.1111/j.1463-6395.1996.tb01276.x CrossRefGoogle Scholar
  69. Hedgecock D, Hedrick PW (2010) Sex determination: genetic models for oysters. J Hered 101(5):602–611.  https://doi.org/10.1093/jhered/esq065 CrossRefPubMedGoogle Scholar
  70. Heller J (1993) Hermaphroditism in molluscs. Biol J Linn Soc 48(1):19–42.  https://doi.org/10.1111/j.1095-8312.1993.tb00874.x CrossRefGoogle Scholar
  71. Henry JQ (2014) Spiralian model systems. Int J Dev Biol 58:389–401PubMedCrossRefGoogle Scholar
  72. Henry JQ, Lyons DC (2016) Molluscan models: Crepidula fornicata. Curr Opin Gen Dev 39:138–148.  https://doi.org/10.1016/j.gde.2016.05.021 CrossRefGoogle Scholar
  73. Henry JQ, Lesoway MP, Perry KJ, Osborne CC, Shankland M, Lyons DC (2017) Beyond the sea: Crepidula atrasolea as a spiralian model system. Int J Dev Biol 61(8–9):479–493.  https://doi.org/10.1387/ijdb.170110jh CrossRefPubMedGoogle Scholar
  74. Hildreth PE (1965) Doublesex, a recessive gene that transforms both males and females of Drosophila into intersexes. Genetics 51(4):659PubMedPubMedCentralGoogle Scholar
  75. Hoagland K (1978) Protandry and the evolution of environmentally-mediated sex change: a study of the Mollusca. Malacologia 17(2):365–391Google Scholar
  76. Hobday AJ, Riser KL (1998) The role of movement by Crepidula norrisiarum Williamson in altering reproductive potential. J Exp Mar Biol Ecol 225(1):139–154.  https://doi.org/10.1016/S0022-0981(97)00218-9 CrossRefGoogle Scholar
  77. Horiguchi T (2017) Mode of action of organotins to induce the development of imposex in gastropods, focusing on steroid and the retinoid X receptor activation hypotheses. In: Horiguchi T (ed) Biological effects by organotins. Springer, Tokyo, pp 199–219.  https://doi.org/10.1007/978-4-431-56451-5_9 CrossRefGoogle Scholar
  78. Hoving HJT, Roeleveld MAC, Lipinski MR, Videler JJ (2006) Nidamental glands in males of the oceanic squid Ancistrocheirus lesueurii (Cephalopoda: Ancistrocheiridae) – sex change or intersexuality? J Zool 269(3):341–348.  https://doi.org/10.1111/j.1469-7998.2006.00093.x CrossRefGoogle Scholar
  79. Ishiki H (1936) Sex-changes in Japanese slipper limpets, Crepidula aculeata and Crepidula walshi. J Sci Hiroshima Univ Ser B 4:91–99Google Scholar
  80. Ishiki H (1938) Histological studies on the sexual organs during sex changes of Crepidula aculeata and Crepidula walshi. J Sci Hiroshima Univ Ser B 6:103–113Google Scholar
  81. Jarne P, Auld JR (2006) Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60(9):1816–1824.  https://doi.org/10.1111/j.0014-3820.2006.tb00525.x CrossRefPubMedGoogle Scholar
  82. Jenner MG (1979) Pseudohermaphroditism in Ilyanassa obsoleta (Mollusca: Neogastropoda). Science 205(4413):1407.  https://doi.org/10.1126/science.472758 CrossRefPubMedGoogle Scholar
  83. Kang D, Pilon M, Weisblat DA (2002) Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: primordial germ cells arise from segmental mesoderm. Dev Biol 245(1):28–41.  https://doi.org/10.1006/dbio.2002.0615 CrossRefPubMedGoogle Scholar
  84. Kato Y, Nakamoto A, Shiomi I, Nakao H, Shimizu T (2013) Primordial germ cells in an oligochaete annelid are specified according to the birth rank order in the mesodermal teloblast lineage. Dev Biol 379(2):246–257.  https://doi.org/10.1016/j.ydbio.2013.04.028 CrossRefPubMedGoogle Scholar
  85. Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477(7365):452–456.  https://doi.org/10.1038/nature10382 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Koene JM (2017) Sex determination and gender expression: reproductive investment in snails. Mol Reprod Dev 84(2):132–143.  https://doi.org/10.1002/mrd.22662 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351(6322):117–121.  https://doi.org/10.1038/351117a0 CrossRefPubMedGoogle Scholar
  88. Kopp A (2012) Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 28(4):175–184.  https://doi.org/10.1016/j.tig.2012.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM (2010) Identifying the germline in an equally cleaving mollusc: vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. J Exp Zool B Mol Dev Evol 314B(4):267–279CrossRefGoogle Scholar
  90. Le Cam S, Pechenik JA, Cagnon M, Viard F (2009) Fast versus slow larval growth in an invasive marine mollusc: does paternity matter? J Hered 100(4):455–464.  https://doi.org/10.1093/jhered/esp007 CrossRefPubMedGoogle Scholar
  91. Le Gall S (1981) Etude expérimentale du facteur morphogénétique contrôlant la différenciation du tractus génital mâle externe chez Crepidula fornicata L. (Mollusque hermaphrodite protandre). Gen Comp Endocr 43(1):51–62.  https://doi.org/10.1016/0016-6480(81)90031-9 CrossRefPubMedGoogle Scholar
  92. Le Gall S, Feral C (1982) Experimental study of in vitro development of the male genital tract in Crepidula fornicata L (Protandric Hermaphrodite Mesogastropod). Int J Invertebr Reprod 5(1):31–42CrossRefGoogle Scholar
  93. Le Gall S, Streiff W (1975) Protandric hermaphroditism in prosobranch gastropods. In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer, Berlin, pp 170–178.  https://doi.org/10.1007/978-3-642-66069-6_17 CrossRefGoogle Scholar
  94. Le Gall S, Feral C, Lengronne C, Porchet M (1987) Partial purification of the neuroendocrine mitogenic factor in the mollusk Crepidula fornicata L. Comp Biochem Phys B 86(2):393–396CrossRefGoogle Scholar
  95. le Maire A, Grimaldi M, Roecklin D, Dagnino S, Vivat-Hannah V, Balaguer P, Bourguet W (2009) Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep 10(4):367–373.  https://doi.org/10.1038/embor.2009.8 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Li Y, Zhang L, Sun Y, Ma X, Wang J, Li R, Zhang M, Wang S, Hu X, Bao Z (2016) Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop Patinopecten yessoensis. Mar Biotechnol 18(4):453–465.  https://doi.org/10.1007/s10126-016-9706-8 CrossRefPubMedGoogle Scholar
  97. Libertini A, Vitturi R, Gregorini A, Colomba M (2009) Karyotypes, banding patterns and nuclear DNA content in Crepidula unguiformis Lamarck, 1822, and Naticarius stercusmuscarum Gmelin, 1791 (Mollusca, Caenogastropoda). Malacologia 51(1):111–118CrossRefGoogle Scholar
  98. Lima D, Reis-Henriques MA, Silva R, Santos AI, Filipe C. Castro L, Santos MM (2011) Tributyltin-induced imposex in marine gastropods involves tissue-specific modulation of the Retinoid X Receptor. Aquat Toxicol 101(1):221–227.  https://doi.org/10.1016/j.aquatox.2010.09.022 CrossRefPubMedGoogle Scholar
  99. Lindberg DR, Wright W (1985) Patterns of sex change of the protandric patellacean limpet Lottia gigantea (Mollusca: Gastropoda). Veliger 27(3):261–265Google Scholar
  100. Lyons DC, Perry KJ, Lesoway MP, Henry JQ (2012) Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 3(1):1–26CrossRefGoogle Scholar
  101. Malaquin A (1925) La ségrégation, au cours de l’ontogenèse, de deux cellules sexuelles primordiales, souches de la lignée germinale, chez Salmacina dysteri (Huxley). CR Acad Sci D Nat 180:324–327Google Scholar
  102. Mérot C, Collin R (2012a) Effects of food availability on sex change in two species of Crepidula (Gastropoda: Calyptraeidae). Mar Ecol Prog Ser 449:173–181CrossRefGoogle Scholar
  103. Mérot C, Collin R (2012b) Effects of stress on sex change in Crepidula cf. marginalis (Gastropoda: Calyptraeidae). J Exp Mar Biol Ecol 416–417:68–71.  https://doi.org/10.1016/j.jembe.2012.02.012 CrossRefGoogle Scholar
  104. Meyer NP, Boyle MJ, Martindale MQ, Seaver EC (2010) A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta. EvoDevo 1(1):8.  https://doi.org/10.1186/2041-9139-1-8 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Miyagawa S, Yatsu R, Iguchi T (2018) Environmental control of sex determination and differentiation in reptiles. In: Kobayashi K, Kitano T, Iwao Y, Kondo M (eds) Reproductive and developmental strategies: the continuity of life. Springer, Tokyo, pp 367–390.  https://doi.org/10.1007/978-4-431-56609-0_18 CrossRefGoogle Scholar
  106. Munday PL, Buston PM, Warner RR (2006) Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol 21(2):89–95.  https://doi.org/10.1016/j.tree.2005.10.020 CrossRefPubMedGoogle Scholar
  107. Nakadera Y, Koene JM (2013) Reproductive strategies in hermaphroditic gastropods: conceptual and empirical approaches. Can J Zool 91(6):367–381.  https://doi.org/10.1139/cjz-2012-0272 CrossRefGoogle Scholar
  108. Nishikawa J, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T (2004) Involvement of the Retinoid X Receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 38(23):6271–6276.  https://doi.org/10.1021/es049593u CrossRefPubMedGoogle Scholar
  109. Oberdörster E, McClellan-Green P (2000) The neuropeptide APGWamide induces imposex in the mud snail, Ilyanassa obsoleta. Peptides 21(9):1323–1330.  https://doi.org/10.1016/S0196-9781(00)00274-6 CrossRefPubMedGoogle Scholar
  110. Oberdörster E, McClellan-Green P (2002) Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Mar Environ Res 54(3–5):715–718.  https://doi.org/10.1016/S0141-1136(02)00118-6 CrossRefPubMedGoogle Scholar
  111. Oliver B, Clough E (2012) Genomics of sex determination in Drosophila. Brief Funct Genomics 11(5):387–394.  https://doi.org/10.1093/bfgp/els019 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Orton JH (1909) On the occurrence of protandric hermaphroditism in the Mollusc Crepidula fornicata. Proc R Soc Lond B Biol 81(550):468–484CrossRefGoogle Scholar
  113. Oyama A, Shimizu T (2007) Transient occurrence of vasa-expressing cells in nongenital segments during embryonic development in the oligochaete annelid Tubifex tubifex. Dev Genes Evol 217(10):675–690.  https://doi.org/10.1007/s00427-007-0180-1 CrossRefPubMedGoogle Scholar
  114. Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G (2017) Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii. elife 6.  https://doi.org/10.7554/eLife.30463
  115. Pascoal S, Carvalho G, Vasieva O, Hughes R, Cossins A, Fang Y, Ashelford K, Olohan L, Barroso C, Mendo S, Creer S (2013) Transcriptomics and in vivo tests reveal novel mechanisms underlying endocrine disruption in an ecological sentinel, Nucella lapillus. Mol Ecol 22(6):1589–1608.  https://doi.org/10.1111/mec.12137 CrossRefPubMedGoogle Scholar
  116. Picard MA-L, Cosseau C, Mouahid G, Duval D, Grunau C, Toulza È, Allienne J-F, Boissier J (2015) The roles of Dmrt (double sex/male-abnormal-3 related transcription factor) genes in sex determination and differentiation mechanisms: ubiquity and diversity across the animal kingdom. C R Biol 338(7):451–462.  https://doi.org/10.1016/j.crvi.2015.04.010 CrossRefPubMedGoogle Scholar
  117. Policansky D (1982) Sex change in plants and animals. Annu Rev Ecol Syst 13(1):471–495CrossRefGoogle Scholar
  118. Ponder WF, Lindberg DR (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linn Soc-Lond 119:83–265CrossRefGoogle Scholar
  119. Proestou DA, Goldsmith MR, Twombly S (2008) Patterns of male reproductive success in Crepidula fornicata provide new insight for sex allocation and optimal sex change. Biol Bull 214(2):192–200CrossRefGoogle Scholar
  120. Rabinowitz JS, Chan XY, Kingsley EP, Duan Y, Lambert JD (2008) Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo. Curr Biol 18(5):331–336.  https://doi.org/10.1016/j.cub.2008.01.055 CrossRefPubMedGoogle Scholar
  121. Ragsdale EJ, Muller MR, Rodelsperger C, Sommer RJ (2013) A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155(4):922–933.  https://doi.org/10.1016/j.cell.2013.09.054 CrossRefPubMedGoogle Scholar
  122. Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391:691.  https://doi.org/10.1038/35618 CrossRefPubMedGoogle Scholar
  123. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rebscher N (2014) Establishing the germline in spiralian embryos. Int J Dev Biol 58:403–411PubMedCrossRefGoogle Scholar
  125. Rebscher N, Zelada-González F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306(2):599–611.  https://doi.org/10.1016/j.ydbio.2007.03.521 CrossRefPubMedGoogle Scholar
  126. Rebscher N, Lidke AK, Ackermann CF (2012) Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerilii are two distinct cell populations. EvoDevo 3(1):9.  https://doi.org/10.1186/2041-9139-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Riddle D, Blumenthal T, Meyer B, Priess J (1997) Introduction to C. elegans. In: Riddle D, Blumenthal T, Meyer B, Priess J (eds) C. elegans II, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  128. Robertson DR (1972) Social control of sex reversal in a coral-reef fish. Science 177(4053):1007–1009.  https://doi.org/10.1126/science.177.4053.1007 CrossRefPubMedGoogle Scholar
  129. Ronis MJJ, Mason AZ (1996) The metabolism of testosterone by the periwinkle (Littorina littorea) in vitro and in vivo: effects of tributyltin. Mar Environ Res 42(1):161–166.  https://doi.org/10.1016/0141-1136(95)00069-0 CrossRefGoogle Scholar
  130. Schøyen M, Green NW, Hjermann DØ, Tveiten L, Beylich B, Øxnevad S, Beyer J (2019) Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar Environ Res 144:1–8.  https://doi.org/10.1016/j.marenvres.2018.11.011 CrossRefPubMedGoogle Scholar
  131. Scott AP (2018) Is there any value in measuring vertebrate steroids in invertebrates? Gen Comp Endocr 265:77–82.  https://doi.org/10.1016/j.ygcen.2018.04.005 CrossRefPubMedGoogle Scholar
  132. Smith BS (1971) Sexuality in the American mud snail, Nassarius obsoletus Say. J Molluscan Stud 39(5):377–378CrossRefGoogle Scholar
  133. Smith BS (1981) Tributyltin compounds induce male characteristics on female mud snails Nassarius obsoletus = Ilyanassa obsoleta. J Appl Toxicol 1(3):141–144.  https://doi.org/10.1002/jat.2550010302 CrossRefPubMedGoogle Scholar
  134. Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SC, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480(7377):364–367.  https://doi.org/10.1038/nature10526 CrossRefPubMedGoogle Scholar
  135. Sousa ACA, Pastorinho MR, Takahashi S, Tanabe S (2014) History on organotin compounds, from snails to humans. Environ Chem Lett 12(1):117–137.  https://doi.org/10.1007/s10311-013-0449-8 CrossRefGoogle Scholar
  136. Streiff W (1966) Endocrinological study of determinism of sexual cycle in a protandric hermaphrodite mollusc Calyptraea sinensis (L.). Ann Endocrinol 3:385Google Scholar
  137. Streiff W (1967) Endocrinologic study of determinism of the sexual cycle in a protandrous hermaphroditic mollusk, Calyptraea sinensis (L). II. Demonstration by in vitro cultivation of hormonal factors conditioning the development of the female tract. Ann Endocrinol 4:461Google Scholar
  138. Stroben E, Oehlmann J, Fioroni P (1992) The morphological expression of imposex in Hinia reticulata (Gastropoda: Buccinidae): a potential indicator of tributyltin pollution. Mar Biol 113(4):625–636.  https://doi.org/10.1007/bf00349706 CrossRefGoogle Scholar
  139. Swartz SZ, Chan XY, Lambert JD (2008) Localization of Vasa mRNA during early cleavage of the snail Ilyanassa. Dev Genes Evol 218(2):107–113.  https://doi.org/10.1007/s00427-008-0203-6 CrossRefPubMedGoogle Scholar
  140. Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G (2014) Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genomics 15(1):491.  https://doi.org/10.1186/1471-2164-15-491 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Thiriot-Quiévreux C (2003) Advances in chromosomal studies of gastropod molluscs. J Molluscan Stud 69(3):187–202.  https://doi.org/10.1093/mollus/69.3.187 CrossRefGoogle Scholar
  142. Warner RR (1975) The adaptive significance of sequential hermaphroditism in animals. Am Nat 109(965):61–82.  https://doi.org/10.1086/282974 CrossRefGoogle Scholar
  143. Warner RR (1988) Sex change and the size-advantage model. Trends Ecol Evol 3(6):133–136.  https://doi.org/10.1016/0169-5347(88)90176-0 CrossRefPubMedGoogle Scholar
  144. Warner RR, Robertson DR, Leigh EG (1975) Sex change and sexual selection. Science 190(4215):633–638PubMedCrossRefGoogle Scholar
  145. Warner RR, Fitch DL, Standish JD (1996) Social control of sex change in the shelf limpet, Crepidula norrisiarum: size-specific responses to local group composition. J Exp Mar Biol Ecol 204(1):155–167CrossRefGoogle Scholar
  146. Wells MJ, Wells J (1959) Hormonal control of sexual maturity in Octopus. J Exp Biol 36(1):1–33Google Scholar
  147. Woods FH (1931) History of the germ cells in Sphaerium striatinum (Lam.). J Morphol 51(2):545–595.  https://doi.org/10.1002/jmor.1050510208 CrossRefGoogle Scholar
  148. Woods FH (1932) Keimbahn determinants and continuity of the germ cells in Sphaerium striatinum (Lam.). J Morphol 53(2):345–365.  https://doi.org/10.1002/jmor.1050530207 CrossRefGoogle Scholar
  149. Wright WG (1988) Sex change in the Mollusca. Trends Ecol Evol 3(6):137–140.  https://doi.org/10.1016/0169-5347(88)90177-2 CrossRefPubMedGoogle Scholar
  150. Xu R, Li Q, Yu H, Kong L (2018) Oocyte maturation and origin of the germline as revealed by the expression of Nanos-like in the Pacific oyster Crassostrea gigas. Gene 663:41–50.  https://doi.org/10.1016/j.gene.2018.04.021 CrossRefPubMedGoogle Scholar
  151. Yue C, Li Q, Yu H (2018) Gonad transcriptome analysis of the Pacific oyster Crassostrea gigas identifies potential genes regulating the sex determination and differentiation process. Mar Biotechnol 20(2):206–219.  https://doi.org/10.1007/s10126-018-9798-4 CrossRefPubMedGoogle Scholar
  152. Yusa Y (2007) Causes of variation in sex ratio and modes of sex determination in the Mollusca – an overview. Am Malacol Bull 23(1–2):89–98CrossRefGoogle Scholar
  153. Yusa Y, Kumagai N (2018) Evidence of oligogenic sex determination in the apple snail Pomacea canaliculata. Genetica 146(3):265–275.  https://doi.org/10.1007/s10709-018-0017-z CrossRefPubMedGoogle Scholar
  154. Zhang N, Xu F, Guo X (2014) Genomic analysis of the Pacific Oyster (Crassostrea gigas) reveals possible conservation of vertebrate sex determination in a Mollusc. G3 Genes Genom Genet 4(11):2207–2217.  https://doi.org/10.1534/g3.114.013904 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologyUniversity of Illinois, Urbana-ChampaignUrbanaUSA

Personalised recommendations