Advertisement

Evolution and Regulation of Limb Regeneration in Arthropods

  • Yuichiro SuzukiEmail author
  • Jacquelyn Chou
  • Sarah L. Garvey
  • Victoria R. Wang
  • Katherine O. Yanes
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 68)

Abstract

Regeneration has fascinated both scientists and non-scientists for centuries. Many organisms can regenerate, and arthropod limbs are no exception although their ability to regenerate is a product shaped by natural and sexual selection. Recent studies have begun to uncover cellular and molecular processes underlying limb regeneration in several arthropod species. Here we argue that an evo-devo approach to the study of arthropod limb regeneration is needed to understand aspects of limb regeneration that are conserved and divergent. In particular, we argue that limbs of different species are comprised of cells at distinct stages of differentiation at the time of limb loss and therefore provide insights into regeneration involving both stem cell-like cells/precursor cells and differentiated cells. In addition, we review recent studies that demonstrate how limb regeneration impacts the development of the whole organism and argue that studies on the link between local tissue damage and the rest of the body should provide insights into the integrative nature of development. Molecular studies on limb regeneration are only beginning to take off, but comparative studies on the mechanisms of limb regeneration across various taxa should not only yield interesting insights into development but also answer how this remarkable ability evolved across arthropods and beyond.

Notes

Acknowledgments

We thank the anonymous reviewer, members of the Suzuki lab, and Heidi Park for their constructive feedback on this review. This work was supported by Wellesley College and by the National Science Foundation grants IOS-1027453 and IOS-1354608 to YS.

References

  1. Agata K, Saito Y, Nakajima E (2007) Unifying principles of regeneration I: epimorphosis versus morphallaxis. Develop Growth Differ 49:73–78CrossRefGoogle Scholar
  2. Alfonso-Gonzalez C, Riesgo-Escovar JR (2018) Fos metamorphoses: lessons from mutants in model organisms. Mech Dev 154:73–81CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alwes F, Enjolras C, Averof M (2016) Live imaging reveals the progenitors and cell dynamics of limb regeneration. elife 5:e19766CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bai S, Thummel R, Godwin AR, Nagase H, Itoh Y, Li L, Evans R, McDermott J, Seiki M, Sarras MP Jr (2005) Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol 24:247–260CrossRefGoogle Scholar
  5. Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S (2009) Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 136:2235–2245CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T (2013) Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 140:959–964CrossRefGoogle Scholar
  7. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bennett FC, Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16:2101–2110CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137:1169–1179CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blair S, McNeill H (2018) Big roles for Fat cadherins. Curr Opin Cell Biol 51:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bosch M, Serras F, Martin-Blanco E, Baguna J (2005) JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol 280:73–86CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brautigam SE, Persons MH (2003) The effect of limb loss on the courtship and mating behavior of the wolf spider Pardosa milvina (Araneae: Lycosidae). J Insect Behav 16:571–587CrossRefGoogle Scholar
  13. Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brunner E, Peter O, Schweizer L, Basler K (1997) pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385:829–833CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bryant PJ (1971) Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev Biol 26:637–651CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bryant PJ (1975) Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J Exp Zool 193:49–77CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bryant PJ, Schubiger G (1971) Giant and duplicated imaginal discs in a new lethal mutant of Drosophila melanogaster. Dev Biol 24:233–263CrossRefPubMedPubMedCentralGoogle Scholar
  18. Campbell G, Tomlinson A (1995) Initiation of the proximodistal axis in insect legs. Development 121:619–628PubMedPubMedCentralGoogle Scholar
  19. Chablais F, Jazwinska A (2010) IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137:871–879CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chou J, Ferris AC, Chen T, Seok R, Yoon D, Suzuki Y (2019) Roles of Polycomb group proteins Enhancer of zeste (E(z)) and Polycomb (Pc) during metamorphosis and larval leg regeneration in the flour beetle Tribolium castaneum. Dev Biol 450(1):34–46.  https://doi.org/10.1016/j.ydbio.2019.03.002 CrossRefPubMedGoogle Scholar
  21. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480CrossRefPubMedPubMedCentralGoogle Scholar
  22. Colombani J, Andersen DS, Leopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336:582–585CrossRefGoogle Scholar
  23. Colombani J, Andersen DS, Boulan L, Boone E, Romero N, Virolle V, Texada M, Leopold P (2015) Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr Biol 25:2723–2729CrossRefGoogle Scholar
  24. Das S (2015) Morphological, molecular, and hormonal basis of limb regeneration across Pancrustacea. Integr Comp Biol 55:869–877CrossRefGoogle Scholar
  25. Das S, Durica DS (2013) Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Mol Cell Endocrinol 365:249–259CrossRefGoogle Scholar
  26. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800CrossRefGoogle Scholar
  27. Donoughe S, Nakamura T, Ewen-Campen B, Green DA, Henderson L, Extavour CG (2014) BMP signaling is required for the generation of primordial germ cells in an insect. Proc Natl Acad Sci USA 111:4133–4138CrossRefGoogle Scholar
  28. Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145CrossRefGoogle Scholar
  29. Erezyilmaz DF (2006) Imperfect eggs and oviform nymphs: a history of ideas about the origins of insect metamorphosis. Integr Comp Biol 46:795–807CrossRefGoogle Scholar
  30. Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350:301–310CrossRefPubMedPubMedCentralGoogle Scholar
  31. French V (1976) Leg regeneration in the cockroach, Blatella germanica. II. Regeneration from a non-congruent tibial graft/host junction. J Embryol Exp Morphol 35:267–301PubMedPubMedCentralGoogle Scholar
  32. French V (1978) Intercalary regeneration around the circumference of the cockroach leg. J Embryol Exp Morphol 47:53–84PubMedPubMedCentralGoogle Scholar
  33. French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981CrossRefPubMedPubMedCentralGoogle Scholar
  34. Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2:E239CrossRefPubMedPubMedCentralGoogle Scholar
  35. Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M (2012) Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336:579–582CrossRefPubMedPubMedCentralGoogle Scholar
  36. Garelli A, Heredia F, Casimiro AP, Macedo A, Nunes C, Garcez M, Dias AR, Volonte YA, Uhlmann T, Caparros E, Koyama T, Gontijo AM (2015) Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat Commun 6:8732CrossRefPubMedPubMedCentralGoogle Scholar
  37. Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS One 4:e7123CrossRefPubMedPubMedCentralGoogle Scholar
  38. Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535CrossRefPubMedPubMedCentralGoogle Scholar
  39. Geng J, Gates PB, Kumar A, Guenther S, Garza-Garcia A, Kuenne C, Zhang P, Looso M, Brockes JP (2015) Identification of the orphan gene Prod 1 in basal and other salamander families. EvoDevo 6:9CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gontijo AM, Garelli A (2018) The biology and evolution of the Dilp8-Lgr3 pathway: a relaxin-like pathway coupling tissue growth and developmental timing control. Mech Dev 154:44–50CrossRefPubMedPubMedCentralGoogle Scholar
  41. Goss RJ (1969) Principles of regeneration. Academic Press, New YorkGoogle Scholar
  42. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in drosophila. Curr Biol 18:435–441CrossRefPubMedPubMedCentralGoogle Scholar
  43. Grusche FA, Degoutin JL, Richardson HE, Harvey KF (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350:255–266CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hackney JF, Zolali-Meybodi O, Cherbas P (2012) Tissue damage disrupts developmental progression and ecdysteroid biosynthesis in Drosophila. PLoS One 7:e49105CrossRefPubMedPubMedCentralGoogle Scholar
  45. Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20:458–463CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hamada Y, Bando T, Nakamura T, Ishimaru Y, Mito T, Noji S, Tomioka K, Ohuchi H (2015) Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus. Development 142:2916–2927CrossRefGoogle Scholar
  47. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H, Halder G (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hariharan IK, Serras F (2017) Imaginal disc regeneration takes flight. Curr Opin Cell Biol 48:10–16CrossRefPubMedPubMedCentralGoogle Scholar
  49. Harris RE, Setiawan L, Saul J, Hariharan IK (2016) Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. elife 5:e11588CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hatem NE, Wang Z, Nave KB, Koyama T, Suzuki Y (2015) The role of juvenile hormone and insulin/TOR signaling in the growth of Manduca sexta. BMC Biol 13:44CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hicklin J, Wolpert L (1973) Positional information and pattern regulation in hydra: the effect of gamma-radiation. J Embryol Exp Morphol 30:741–752PubMedPubMedCentralGoogle Scholar
  52. Hopkins PM (1989) Ecdysteroids and regeneration in the fiddler crab Uca pugilator. J Exp Zool 252:293–299CrossRefGoogle Scholar
  53. Hopkins PM (1993) Regeneration of walking legs in the fiddler-crab Uca-pugilator. Am Zool 33:348–356CrossRefGoogle Scholar
  54. Hopkins PM (2001) Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Am Zool 41:389–398Google Scholar
  55. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hussey RG, Thompson WR, Calhoun ET (1927) The influence of X-rays on the development of Drosophila larvae. Science 66:65–66CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 10:205–219CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ishimaru Y, Nakamura T, Bando T, Matsuoka Y, Ohuchi H, Noji S, Mito T (2015) Involvement of dachshund and Distal-less in distal pattern formation of the cricket leg during regeneration. Sci Rep 5:8387CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jaszczak JS, Halme A (2016) Arrested development: coordinating regeneration with development and growth in Drosophila melanogaster. Curr Opin Genet Dev 40:87–94CrossRefPubMedPubMedCentralGoogle Scholar
  60. Jaszczak JS, Wolpe JB, Dao AQ, Halme A (2015) Nitric oxide synthase regulates growth coordination during Drosophila melanogaster imaginal disc regeneration. Genetics 200:1219–1228CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jaszczak JS, Wolpe JB, Bhandari R, Jaszczak RG, Halme A (2016) Growth coordination during Drosophila melanogaster imaginal disc regeneration is mediated by signaling through the relaxin receptor Lgr3 in the prothoracic gland. Genetics 204:703–709CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jaźwińska A, Sallin P (2016) Regeneration versus scarring in vertebrate appendages and heart. J Pathol 238:233–246CrossRefPubMedPubMedCentralGoogle Scholar
  63. Katsuyama T, Comoglio F, Seimiya M, Cabuy E, Paro R (2015) During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8-mediated developmental delay. Proc Natl Acad Sci USA 112:E2327–E2336CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kawakami Y, Esteban CR, Raya M, Kawakami H, Marti M, Dubova I, Belmonte JCI (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20:3232–3237CrossRefPubMedPubMedCentralGoogle Scholar
  65. Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK (2017) The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 13:e1006937CrossRefPubMedPubMedCentralGoogle Scholar
  66. Klebes A, Sustar A, Kechris K, Li H, Schubiger G, Kornberg TB (2005) Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132:3753–3765CrossRefPubMedPubMedCentralGoogle Scholar
  67. Konopova B, Smykal V, Jindra M (2011) Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6:e28728CrossRefPubMedPubMedCentralGoogle Scholar
  68. Konstantinides N, Averof M (2014) A common cellular basis for muscle regeneration in arthropods and vertebrates. Science 343:788–791CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65CrossRefGoogle Scholar
  70. Krishnakumaran A (1972) Injury induced molting in Galleria mellonella larvae. Biol Bull 142:281–292CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kunieda T, Kurata S, Natori S (1997) Regeneration of Sarcophaga imaginal discs in vitro: implication of 20-hydroxyecdysone. Dev Biol 183:86–94CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kunkel JG (1977) Cockroach molting. II. The nature of regeneration-induced delay of molting hormone secretion. Biol Bull 153:145–162CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lee N, Maurange C, Ringrose L, Paro R (2005) Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438:234–237CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lee AK, Sze CC, Kim ER, Suzuki Y (2013) Developmental coupling of larval and adult stages in a complex life cycle: insights from limb regeneration in the flour beetle, Tribolium castaneum. EvoDevo 4:20CrossRefPubMedPubMedCentralGoogle Scholar
  76. Leontovich AA, Zhang J, Shimokawa K, Nagase H, Sarras MP Jr (2000) A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 127:907–920PubMedPubMedCentralGoogle Scholar
  77. Llano E, Pendas AM, Aza-Blanc P, Kornberg TB, Lopez-Otin C (2000) Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 275:35978–35985CrossRefPubMedPubMedCentralGoogle Scholar
  78. Llano E, Adam G, Pendas AM, Quesada V, Sanchez LM, Santamaria I, Noselli S, Lopez-Otin C (2002) Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J Biol Chem 277:23321–23329CrossRefPubMedPubMedCentralGoogle Scholar
  79. Londono R, Sun AX, Tuan RS, Lozito TP (2018) Tissue repair and epimorphic regeneration: an overview. Curr Pathobiol Rep 6:61–69CrossRefPubMedPubMedCentralGoogle Scholar
  80. Madhavan K, Schneiderman HA (1969) Hormonal control of imaginal disc regeneration in Galleria mellonella (Lepidoptera). Biol Bull 137:321–331CrossRefGoogle Scholar
  81. Maginnis TL (2006a) The costs of autotomy and regeneration in animals: a review and framework for future research. Behav Ecol 17:857–872CrossRefGoogle Scholar
  82. Maginnis TL (2006b) Leg regeneration stunts wing growth and hinders flight performance in a stick insect (Sipyloidea sipylus). Proc Biol Sci 273:1811–1814CrossRefPubMedPubMedCentralGoogle Scholar
  83. Malá J, Sehnal F, Kumaran AK, Granger NA (1987) Effects of starvation, chilling, and injury on endocrine gland function in Galleria mellonella. Arch Insect Biochem Physiol 4:113–128CrossRefGoogle Scholar
  84. Maruzzo D, Bortolin F (2013) Arthropod regeneration. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, BerlinGoogle Scholar
  85. Maruzzo D, Bonato L, Brena C, Fusco G, Minelli A (2005) Appendage loss and regeneration in arthropods: a comparative view. In: Koenemann S, Jener R (eds) Crustacea and arthropod relationships. Crustacean issues 16. CRC Press, Boca RatonGoogle Scholar
  86. Maves L, Schubiger G (1995) Wingless induces transdetermination in developing Drosophila imaginal discs. Development 121:1263–1272PubMedPubMedCentralGoogle Scholar
  87. Maves L, Schubiger G (1998) A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development 125:115–124PubMedPubMedCentralGoogle Scholar
  88. McClure KD, Schubiger G (2007) Transdetermination: Drosophila imaginal disc cells exhibit stem cell-like potency. Int J Biochem Cell Biol 39(6):1105–1118Google Scholar
  89. McClure KD, Sustar A, Schubiger G (2008) Three genes control the timing, the site and the size of blastema formation in Drosophila. Dev Biol 319:68–77CrossRefPubMedPubMedCentralGoogle Scholar
  90. McCusker C, Bryant SV, Gardiner DM (2015) The axolotl limb blastema: Cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration 2:54–71CrossRefPubMedPubMedCentralGoogle Scholar
  91. Meserve JH, Duronio RJ (2015) Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 142:2740–2751CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mitten EK, Jing D, Suzuki Y (2012) Matrix metalloproteinases (MMPs) are required for wound closure and healing during larval leg regeneration in the flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 42:854–864CrossRefPubMedPubMedCentralGoogle Scholar
  94. Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of wingless/armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130CrossRefGoogle Scholar
  95. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564CrossRefPubMedPubMedCentralGoogle Scholar
  97. Muneoka K, Han M, Gardiner DM (2008) Regrowing human limbs. Sci Am 298:56–63CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nakamura T, Mito T, Tanaka Y, Bando T, Ohuchi H, Noji S (2007) Involvement of canonical Wnt/Wingless signaling in the determination of the positional values within the leg segment of the cricket Gryllus bimaculatus. Develop Growth Differ 49:79–88CrossRefGoogle Scholar
  99. Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008a) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72CrossRefGoogle Scholar
  100. Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S (2008b) EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph. Dev Biol 319:46–55CrossRefGoogle Scholar
  101. Narbonne-Reveau K, Maurange C (2019) Developmental regulation of regenerative potential in Drosophila by ecdysone through a bistable loop of ZBTB transcription factors. PLoS Biol 17:e3000149CrossRefPubMedPubMedCentralGoogle Scholar
  102. Needham AE (1946) Peripheral nerve and regeneration in Crustacea. J Exp Biol 22:107–109PubMedGoogle Scholar
  103. Needham AE (1965) Regeneration in arthropods and its endocrine control. In: Kiortis V, Trampusch H (eds) Regeneration in Animals. North Holland, Amsterdam, pp 283–323Google Scholar
  104. Newmark PA, Alvarado AS (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219CrossRefGoogle Scholar
  105. Nijhout HF (1998) Insect hormones. Princeton University Press, PrincetonGoogle Scholar
  106. Nijhout HF (2015) Big or fast: two strategies in the developmental control of body size. BMC Biol 13:57CrossRefPubMedPubMedCentralGoogle Scholar
  107. Nüesch H (1968) The role of the nervous system in insect morphogenesis and regeneration. Annu Rev Entomol 13:27–44CrossRefGoogle Scholar
  108. Owlarn S, Bartscherer K (2016) Go ahead, grow a head! A planarian’s guide to anterior regeneration. Regeneration 3:139–155CrossRefPubMedPubMedCentralGoogle Scholar
  109. Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19:491–505CrossRefPubMedPubMedCentralGoogle Scholar
  110. Parker NF, Shingleton AW (2011) The coordination of growth among Drosophila organs in response to localized growth-perturbation. Dev Biol 357:318–325CrossRefGoogle Scholar
  111. Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1:144–154CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pohley H (1965) Regeneration and the moulting cycle in Ephestia kuehniella. In: Kiortis V, Trampusch H (eds) Regeneration in animals. North Holland, Amsterdam, pp 324–330Google Scholar
  113. Poodry CA, Woods DF (1990) Control of the developmental timer for Drosophila pupariation. Roux Arch Dev Biol 199:219–227CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ramet M, Lanot R, Zachary D, Manfruelli P (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145–156CrossRefPubMedPubMedCentralGoogle Scholar
  115. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283CrossRefPubMedPubMedCentralGoogle Scholar
  116. Riddiford LM (1996) Juvenile hormone: the status of its “status quo” action. Arch Insect Biochem Physiol 32:271–286CrossRefPubMedPubMedCentralGoogle Scholar
  117. Russell MA (1974) Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol 40:24–39CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187CrossRefPubMedPubMedCentralGoogle Scholar
  119. Santabárbara-Ruiz P, López-Santillán M, Martínez-Rodríguez I, Binagui-Casas A, Pérez L, Milán M, Corominas M, Serras F (2015) ROS-induced JNK and p38 signaling is required for unpaired cytokine activation during Drosophila regeneration. PLoS Genet 11:e1005595CrossRefPubMedPubMedCentralGoogle Scholar
  120. Schubiger G (1971) Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev Biol 26:277–295CrossRefPubMedPubMedCentralGoogle Scholar
  121. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–565CrossRefPubMedPubMedCentralGoogle Scholar
  122. Shah M, Namigai E, Suzuki Y (2011) The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Mech Dev 128:342–400CrossRefPubMedPubMedCentralGoogle Scholar
  123. Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K (2015) The mammalian blastema: regeneration at our fingertips. Regeneration 2:93–105CrossRefPubMedPubMedCentralGoogle Scholar
  124. Simpson P, Berreur P, Berreur-Bonnenfant J (1980) The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J Embryol Exp Morphol 57:155–165PubMedPubMedCentralGoogle Scholar
  125. Singer M (1952) The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 27:169–200CrossRefPubMedPubMedCentralGoogle Scholar
  126. Skinner DM (1985) Molting and regeneration. In: Bliss DE, Mantel LH (eds) Biology of crustacea, integument, pigments, and hormonal processes. Academic Press, New York, pp 43–146CrossRefGoogle Scholar
  127. Skinner DM, Graham DE (1972) Loss of limbs as a stimulus to ecdysis in Brachyura (True Crabs). Biol Bull 143:222–233CrossRefGoogle Scholar
  128. Skinner A, Khan SJ, Smith-Bolton RK (2015) Trithorax regulates systemic signaling during Drosophila imaginal disc regeneration. Development 142:3500–3511CrossRefPubMedPubMedCentralGoogle Scholar
  129. Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16:797–809CrossRefPubMedPubMedCentralGoogle Scholar
  130. Stevens LJ, Page-McCaw A (2012) A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell 23:1068–1079CrossRefPubMedPubMedCentralGoogle Scholar
  131. Stieper BC, Kupershtok M, Driscoll MV, Shingleton AW (2008) Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev Biol 321:18–26CrossRefPubMedPubMedCentralGoogle Scholar
  132. Stock A, O’Farrell AF (1954) Regeneration and the moulting cycle in Blattella germanica L. II. Simultaneous regeneration of both metathoracic legs. Aust J Biol Sci 7:302–307CrossRefPubMedPubMedCentralGoogle Scholar
  133. Stocum DL (2017) Mechanisms of urodele limb regeneration. Regeneration 4:159–200CrossRefPubMedPubMedCentralGoogle Scholar
  134. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134:479–489CrossRefPubMedPubMedCentralGoogle Scholar
  135. Su T, Ludwig MZ, Xu J, Fehon RG (2017) Kibra and Merlin activate the Hippo pathway spatially distinct from and independent of Expanded. Dev Cell 40:478–490 e473CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sun G, Irvine KD (2011) Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol 350:139–151CrossRefPubMedPubMedCentralGoogle Scholar
  137. Suzuki Y, Squires DC, Riddiford LM (2009) Larval leg integrity is maintained by Distal-less and is required for proper timing of metamorphosis in the flour beetle, Tribolium castaneum. Dev Biol 326:60–67CrossRefPubMedPubMedCentralGoogle Scholar
  138. Švácha P (1992) What are and what are not imaginal discs: Reevaluation of some basic concepts (insecta, holometabola). Dev Biol 154:101–117CrossRefPubMedPubMedCentralGoogle Scholar
  139. Swarup S, Verheyen EM (2012) Wnt/Wingless signaling in Drosophila. Cold Spring Harb Perspect Biol 4:a007930CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tanaka K, Truman JW (2005) Development of the adult leg epidermis in Manduca sexta: contribution of different larval cell populations. Dev Genes Evol 215:78–89CrossRefPubMedPubMedCentralGoogle Scholar
  141. Tanaka HV, Ng NC, Yang Yu Z, Casco-Robles MM, Maruo F, Tsonis PA, Chiba C (2016) A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun 7:11069CrossRefPubMedPubMedCentralGoogle Scholar
  142. Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578CrossRefPubMedPubMedCentralGoogle Scholar
  143. Tribolium-Genome-Sequencing-Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955CrossRefGoogle Scholar
  144. Truby PR (1983) Blastema formation and cell division during cockroach limb regeneration. J Embryol Exp Morphol 75:151–164PubMedPubMedCentralGoogle Scholar
  145. Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452CrossRefGoogle Scholar
  146. Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 47:467–500CrossRefPubMedPubMedCentralGoogle Scholar
  147. Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, Blanco E, Martin-Blanco E, Corominas M, Ellul J, Aigaki T, Richardson HE, Brumby AM (2013) The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet 9:e1003627CrossRefPubMedPubMedCentralGoogle Scholar
  148. Uetz GW, McClintock WJ, Miller D, Smith EI, Cook KK (1996) Limb regeneration and subsequent asymmetry in a male secondary sexual character influences sexual selection in wolf spiders. Behav Ecol Sociobiol 38:253–257CrossRefGoogle Scholar
  149. Villarreal CM, Darakananda K, Wang VR, Jayaprakash PM, Suzuki Y (2015) Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect. Dev Biol 404:125–135CrossRefPubMedPubMedCentralGoogle Scholar
  150. Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279:86–98CrossRefPubMedPubMedCentralGoogle Scholar
  151. Waddington CH (1957) The strategy of the genes. A discussion of some aspects of theoretical biology. Allen & Unwin, LondonGoogle Scholar
  152. Wang S, Tan XL, Michaud JP, Shi ZK, Zhang F (2015) Sexual selection drives the evolution of limb regeneration in Harmonia axyridis (Coleoptera: Coccinellidae). Bull Entomol Res 105:245–252CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wei G, Schubiger G, Harder F, Müller AM (2000) Stem cell plasticity in mammals and transdetermination in Drosophila: common themes? Stem Cells 18(6):409–414Google Scholar
  154. Whyte JL, Smith AA, Helms JA (2012) Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 4:a008078CrossRefPubMedPubMedCentralGoogle Scholar
  155. Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102CrossRefPubMedPubMedCentralGoogle Scholar
  156. Woods DF, Bryant PJ (1989) Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev Biol 134:222–235CrossRefPubMedPubMedCentralGoogle Scholar
  157. Worley MI, Setiawan L, Hariharan IK (2012) Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 46:289–310CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14:388–398CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yang EV, Bryant SV (1994) Developmental regulation of a matrix metalloproteinase during regeneration of axolotl appendages. Dev Biol 166:696–703CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yang EV, Gardiner DM, Carlson MRJ, Nugas CA, Bryant SV (1999) Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn 216:2–9CrossRefPubMedPubMedCentralGoogle Scholar
  161. Yu XL, Chang ES, Mykles DL (2002) Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis. Biol Bull 202:204–212CrossRefPubMedPubMedCentralGoogle Scholar
  162. Zeidler MP, Bausek N (2013) The Drosophila JAK-STAT pathway. JAKSTAT 2:e25353PubMedPubMedCentralGoogle Scholar
  163. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14:377–387CrossRefPubMedPubMedCentralGoogle Scholar
  164. Zhou X, Riddiford LM (2002) Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129:2259–2269PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuichiro Suzuki
    • 1
    Email author
  • Jacquelyn Chou
    • 1
  • Sarah L. Garvey
    • 1
  • Victoria R. Wang
    • 1
  • Katherine O. Yanes
    • 1
  1. 1.Department of Biological SciencesWellesley CollegeWellesleyUSA

Personalised recommendations