Cell Biology of the Tardigrades: Current Knowledge and Perspectives

Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 68)


The invertebrate phylum Tardigrada has received much attention for containing species adapted to the most challenging environmental conditions where an ability to survive complete desiccation or freezing in a cryptobiotic state is necessary for persistence. Although research on tardigrades has a long history, the last decade has seen a dramatic increase in molecular biological (“omics”) studies, most of them with the aim to reveal the biochemical mechanisms behind desiccation tolerance of tardigrades. Several other aspects of tardigrade cell biology have been studied, and we review some of them, including karyology, embryology, the role of storage cells, and the question of whether tardigrades are eutelic animals. We also review some of the theories about how anhydrobiotic organisms are able to maintain cell integrity under dry conditions, and our current knowledge on the role of vitrification and DNA protection and repair. Many aspects of tardigrade stress tolerance have relevance for human medicine, and the first transfers of tardigrade stress genes to human cells have now appeared. We expect this field to develop rapidly in the coming years, as more genomic information becomes available. However, many basic cell biological aspects remain to be investigated, such as immunology, cell cycle kinetics, cell metabolism, and culturing of tardigrade cells. Such development will be necessary to allow tardigrades to move from a nonmodel organism position to a true model organism with interesting associations with the current models C. elegans and D. melanogaster.


  1. Altiero T, Rebecchi L (2003) First evidence of achiasmatic male meiosis in the water bears Richtersius coronifer and Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Hereditas 139:116–120PubMedCrossRefGoogle Scholar
  2. Arakawa K (2016) No evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci USA 113(22):E3057PubMedCrossRefGoogle Scholar
  3. Arakawa K, Yoshida Y, Tomita M (2016) Genome sequencing of a single tardigrade Hypsibius dujardini individual. Sci Data 3:160063PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baumann H (1920) Mitteilungen zum feineren bau der tardigraden. Zool Anz 52:56–66Google Scholar
  5. Beltrán-Pardo EA, Jönsson KI, Wojcik A, Haghdoost S, Bermúdez Cruz RM, Bernal Villegas JE (2013) Sequence analysis of the DNA-repair gene rad51 in the tardigrades Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi. J Limnol 72(s1):80–91Google Scholar
  6. Bertolani R (1970a) Mitosi somatiche e costanza cellular numerica nei Tardigradi. Atti Accad Naz Lincei Rc Ser 8a 48:739–742Google Scholar
  7. Bertolani R (1970b) Variabilità numerica cellulare in alcuni tessuti di Tardigradi. Atti Accad Naz Lincei Rc Ser 8a 49:442–446Google Scholar
  8. Bertolani R (1994) Tardigrada. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Asexual propagation and reproductive strategies, vol VI. Oxford and IBH, New Delhi, pp 25–37Google Scholar
  9. Bertolani R (2001) Evolution of the reproductive mechanisms in tardigrades – a review. Zool Anz 240:247–252CrossRefGoogle Scholar
  10. Bertolani R, Rebecchi L (2018) Cytologi and cytogenetics. In: Schill RO (ed) Water bears: the biology of tardigrades. Springer, New York, pp 145–161CrossRefGoogle Scholar
  11. Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65(6):975–984.e5PubMedPubMedCentralCrossRefGoogle Scholar
  12. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ et al (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108(38):15920–15924PubMedCrossRefGoogle Scholar
  13. Collares-Pereira MJ, Matos I, Morgado-Santos M, Coelho MM (2013) Natural pathways towards polyploidy in animals: the Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids. Cytogenet Genome Res 140:97–116PubMedCrossRefGoogle Scholar
  14. Crowe JH (1975) The physiology of cryptobiosis in tardigrades. Mem Ist Idrobiol 32(Suppl):37–59Google Scholar
  15. Crowe JH (2008) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158CrossRefGoogle Scholar
  16. Crowe JH (2015) Anhydrobiosis: an unsolved problem with applications in human welfare. In: Disalvo EA (ed) Membrane hydration: the role of water in the structure and function of biological membranes. Subcellular biochemistry 71. Springer, Basel, pp 263–280CrossRefGoogle Scholar
  17. Crowe JH, Madin KA (1974) Anhydrobiosis in tardigrades and nematodes. Trans Am Microsc Soc 93:513–524CrossRefGoogle Scholar
  18. Crowe JH, Carpenter IE, Crowe LM (1998a) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  19. Crowe JH, Clegg JS, Crowe LM (1998b) Anhydrobiosis: the water replacement hypothesis. In: Reid DS (ed) The properties of water in foods. Chapman & Hall, New York, pp 440–455CrossRefGoogle Scholar
  20. Cunha A, Azevedo RBR, Emmons SW, Leroi AM (1999) Variable cell number in nematodes. Nature 402(6759):253PubMedCrossRefGoogle Scholar
  21. Czernekova M, Jönsson KI (2016) Experimentally induced repeated anhydrobiosis in the eutardigrade Richtersius coronifer. PLoS One 11(11):e0164062PubMedPubMedCentralCrossRefGoogle Scholar
  22. Czernekova M, Jönsson KI, Chajec L, Student S, Poprawa I (2017) The structure of the desiccated Richtersius coronifer (Richters, 1903). Protoplasma 254(3):1367–1377PubMedCrossRefGoogle Scholar
  23. Czernekova M, Janelt K, Student S, Jönsson KI, Poprawa I (2018) A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLoS One 13(8):e0201430PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176PubMedCrossRefGoogle Scholar
  25. Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11(1):12–21PubMedCrossRefGoogle Scholar
  26. Degma P, Bertolani R, Guidetti R (2018) Actual checklist of Tardigrada species. Ver. 25: 10 05-2014, p 48. Accessed 7 Nov 2018
  27. Dewel RA, Nelson DR, Dewel WC (1993) Tardigrada. In: Harrison FW, Rice EM (eds) Microscopic anatomy of invertebrates, Onychophora, Chilopoda and Lesser Protostomata, vol 12. Wiley-Liss, New York, pp 143–183Google Scholar
  28. Eibye-Jacobsen J (1997) New observations on the embryology of the Tardigrada. Zool Anz 235:201–216Google Scholar
  29. Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz JM, Fahmy K, Kurzchalia TV (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336PubMedCrossRefGoogle Scholar
  30. Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33:79–97PubMedCrossRefGoogle Scholar
  31. Förster F, Beisser D, Grohme MA, Liang C, Mali B, Siegl AM, Engelmann JC, Shkumatov AV, Schokraie E, Müller T, Schnölzer M, Schill RO, Frohme M, Dandekar T (2012) Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinform Biol Insights 6:69–96PubMedPubMedCentralCrossRefGoogle Scholar
  32. França MB, Panek AD, Eleutherio ECA (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A 146:621–631CrossRefGoogle Scholar
  33. Gabriel WN, Goldstein B (2007) Segmental expression of Pax3/7 and engrailed homologs in tardigrade development. Dev Genes Evol 217:421–433PubMedCrossRefGoogle Scholar
  34. Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559PubMedCrossRefGoogle Scholar
  35. Gąsiorek P, Stec D, Morek W, Michalczyk Ł (2018) An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada). Zootaxa 4415(1):45PubMedCrossRefGoogle Scholar
  36. Gilbert JJ (1983) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, Oogenesis, oviposition, and oosorption, vol I. Wiley, Chichester, pp 181–209Google Scholar
  37. Gross V, Bährle R, Mayer G (2018) Detection of cell proliferation in adults of the water bear Hypsibius dujardini (Tardigrada) via incorporation of a thymidine analog. Tissue Cell 51:77–83PubMedCrossRefGoogle Scholar
  38. Hashimoto T, Kunieda T (2017) DNA protection protein, a novel mechanism of radiation tolerance: lessons from tardigrades. Life 7(2):26PubMedCentralCrossRefPubMedGoogle Scholar
  39. Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, Enomoto A, Kondo K, Tanaka S, Hara Y, Koshikawa S, Sagara H, Miura T, Yokobori S-I, Miyagawa K, Suzuki Y, Kubo T, Oyama M, Kohara Y, Fujiyama A, Arakawa K, Katayama T, Toyoda A, Kunieda T (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361PubMedCrossRefGoogle Scholar
  41. Hengherr S, Heyer AG, Köhler HR, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades – evidence for divergence in response to dehydration. FEBS J 275:281–288PubMedCrossRefGoogle Scholar
  42. Horikawa DD (2008) The Tardigrade Ramazzottius varieornatus as a model animal for astrobiological studies. Biol Sci Space 22(3):93–98CrossRefGoogle Scholar
  43. Hyra M, Rost-Roszkowska MM, Student S, Włodarczyk A, Deperas M, Janelt K, Poprawa I (2016) Body cavity cells of Parachela during their active life. Zool J Linnean Soc 178(4):878–887CrossRefGoogle Scholar
  44. Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766PubMedCrossRefGoogle Scholar
  45. Jönsson KI, Persson O (2010) Trehalose in three species of desiccation tolerant tardigrades. Open Zool J 3:1–5CrossRefGoogle Scholar
  46. Jönsson KI, Rebecchi L (2002) Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival. J Exp Zool 293:578–584PubMedCrossRefGoogle Scholar
  47. Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol 146:456–460PubMedCrossRefGoogle Scholar
  48. Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low earth orbit. Curr Biol 18:R729–R731PubMedCrossRefGoogle Scholar
  49. Jönsson KI, Levine EB, Wojcik A, Haghdoost S, Harms-Ringdahl M (2018) Environmental adaptations – radiation tolerance. In: Schill RO (ed) Water bears: the biology of tardigrades. Springer, New York, pp 311–330CrossRefGoogle Scholar
  50. Jørgensen A, Møbjerg N, Kristensen RM (2007) A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. J Limnol 66(Suppl 1):77–83CrossRefGoogle Scholar
  51. Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B 150:149–191PubMedCrossRefGoogle Scholar
  52. Kondo K, Kubo T, Kunieda T (2015) Suggested involvement of PP1/PP2A activity and de novo gene expression in anhydrobiotic survival in a tardigrade, Hypsibius dujardini, by chemical genetic approach. PLoS One 10(12):e0144803PubMedPubMedCentralCrossRefGoogle Scholar
  53. Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci USA 113(18):5053–5058PubMedCrossRefGoogle Scholar
  54. Krisko A, Leroya M, Radman M, Meselson M (2012) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 109(7):2354–2357PubMedCrossRefGoogle Scholar
  55. Kuzmic M, Richaud M, Cuq P, Frelon S, Galas S (2018) Carbonylation accumulation of the Hypsibius exemplaris anhydrobiote reveals age-associated marks. PLoS One 13(12):e0208617PubMedPubMedCentralCrossRefGoogle Scholar
  56. Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:554–564CrossRefGoogle Scholar
  57. Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122(1):1–25CrossRefGoogle Scholar
  58. Madin KAC, Crowe J (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during drying. J Exp Zool 193:335–342CrossRefGoogle Scholar
  59. Marcus E (1929) Tardigrada. In: Bronns HG (ed) Klassen und Ordungen des Tierreichs, vol 5, Section 4, Part 3. Akademische Verlagsgesellschaft, Leipzig, pp 1–608Google Scholar
  60. Martini E (1923) Die zellkonstanz und ihre beziehungen zu anderen zoologischen vorwürfen. Z Anat Entwicklungsgesch 70(1–3):179–259CrossRefGoogle Scholar
  61. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684PubMedPubMedCentralCrossRefGoogle Scholar
  62. Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol 202:409–420CrossRefGoogle Scholar
  63. Nakhleh J, El Moussawi L, Osta MA (2017) The melanization response in insect immunity. Adv Insect Physiol 52:83–109CrossRefGoogle Scholar
  64. Neiman M, Beaton MJ, Hessen DO, Jeyasingh PD, Weider LJ (2017) Endopolyploidy as a potential driver of animal ecology and evolution. Biol Rev 92(1):234–247CrossRefGoogle Scholar
  65. Nelson DR, Guidetti R, Rebecchi L (2015) Phylum Tardigrada. In: Thorp J, Rogers DC (eds) Ecology and general biology: Thorp and Covich’s freshwater invertebrates. Academic, London, pp 347–380CrossRefGoogle Scholar
  66. Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429PubMedCrossRefGoogle Scholar
  67. Pandita TK, Higashikubo R, Hunt CR (2004) HSP70 and genomic stability. Cell Cycle 3(5):591–592PubMedCrossRefGoogle Scholar
  68. Parfrey LW, Lahr DJG, Katz LA (2008) The dynamic nature of eukaryotic genomes. Mol Biol Evol 25(4):787–794PubMedPubMedCentralCrossRefGoogle Scholar
  69. Poprawa I, Hyra M, Rost-Roszkowska MM (2015) Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae). Protoplasma 252:1019–1029PubMedCrossRefGoogle Scholar
  70. Rebecchi L (2013) Dry up and survive: the role of antioxidant defences in anhydrobiotic organisms. J Limnol 72(s1):62–72Google Scholar
  71. Rebecchi L, Rossi V, Altiero T, Frigieri A, Bertolani R, Menozzi P (2003) Reproductive modes and genetic polymorphism in the tardigrade Richtersius coronifer (Eutardigrada, Macrobiotidae). Invertebr Biol 122(1):19–27CrossRefGoogle Scholar
  72. Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R (2009a) Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol 212:4033–4039PubMedCrossRefGoogle Scholar
  73. Rebecchi L, Boschini D, Cesari M, Lencioni V, Bertolani R, Guidetti R (2009b) Stress response of a boreo-alpine species of tardigrade, Borealibius zetlandicus (Eutardigrada, Hypsibiidae). J Limnol 68(1):64–70CrossRefGoogle Scholar
  74. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules – mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–291PubMedPubMedCentralCrossRefGoogle Scholar
  75. Reuner A, Hengherr S, Brümmer F, Schill RO (2010) Comparative studies on storage cells in tardigrades during starvation and anhydrobiosis. Curr Zool 56(2):259–263CrossRefGoogle Scholar
  76. Rizzo AM, Negroni M, Altiero T, Montorfano G, Corsetto P, Berselli P, Berra B, Guidetti R, Rebecchi L (2010) Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol 156:115–121PubMedCrossRefGoogle Scholar
  77. Rosati F (1968) Ricerche di microscopia elettronica sui Tardigradi, 2. I globuli cavitari. Atti Accad Fisiocritici, Siena 17:1439–1452Google Scholar
  78. Schill RO, Jönsson KI, Brümmer F, Pfannkuchen M (2011) Food of tardigrades: a case study to understand food choice, intake and digestion. J Zool Syst Evol Res 49(Suppl 1):66–70CrossRefGoogle Scholar
  79. Schoenfelder KP, Fox DT (2015) The expanding implications of polyploidy. J Cell Biol 209:485–491PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, Förster F, Schill RO, Frohme M, Dandekar T, Schnölzer M (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 7:e45682PubMedPubMedCentralCrossRefGoogle Scholar
  81. Smith FW, Boothby TC, Giovannini I, Rebecchi L, Jockusch EL, Goldstein B (2016) The compact body plan of tardigrades evolved by the loss of a large body region. Curr Biol 26:224–229PubMedCrossRefGoogle Scholar
  82. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119PubMedCrossRefGoogle Scholar
  83. Szymańska B (1994) Interdependence between storage bodies and egg developmental stages in Macrobiotus richtersi Murray, 1911 (Tardigrada). Acta Biol Cracov 36:41–48Google Scholar
  84. Tanaka S, Tanaka J, Miwa Y, Horikawa DD, Katayama T, Arakawa K, Toyoda A, Kubo T, Kunieda T (2015) Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic tardigrade improve osmotic tolerance of human cells. PLoS One 10(2):e0118272PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tsujimoto M, Imura S, Kanda H (2016) Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years. Cryobiology 72:78–81PubMedCrossRefGoogle Scholar
  86. Van Cleave HJ (1932) Eutely or cell constancy in its relation to body size. Q Rev Biol 7(1):59–67CrossRefGoogle Scholar
  87. Volkmann A, Greven H (1993) Ultrastructural localization of tyrosinase in the tardigrade cuticle. Tissue Cell 25:435–438PubMedCrossRefGoogle Scholar
  88. von Erlanger R (1895) Beiträge zur Morphologie der Tardigraden: I. Zur Embryologie eines Tardigraden: Macrobiotus macronyx Dujardin. Morph Jb 22:491–513Google Scholar
  89. von Wenck W (1914) Entwicklungsgeschichtliche Untersuchungen an Tardigraden (Macrobiotus lacustris Duj.). Zool Jb Anat 37:465–514Google Scholar
  90. Walsh EJ, Zhang L (1992) Polyploidy and body size variation in a natural population of the rotifer Euchlanis dilatata. J Evol Biol 5:345–353CrossRefGoogle Scholar
  91. Wang C, Grohme MA, Mali B, Schill RO, Frohme M (2014) Towards decrypting cryptobiosis – analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 9(3):e92663PubMedPubMedCentralCrossRefGoogle Scholar
  92. Węglarska B (1975) Studies on the morphology of Macrobiotus richtersi Murray, 1911. Mem Ist Ital Idrobiol 32:445–464Google Scholar
  93. Westh P, Ramløv H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311CrossRefGoogle Scholar
  94. Wright JC (2001) Cryptobiosis 300 years from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582CrossRefGoogle Scholar
  95. Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, Ishino K, Komine S, Kunieda T, Tomita M, Blaxter M, Arakawa K (2017) Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol 15(7):e2002266PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden

Personalised recommendations