Generation of Block Structured Grids on Complex Domains for High Performance Simulation
- 1 Citations
- 335 Downloads
Abstract
In high performance computing, block structured grids are favored due to their geometric adaptability while supporting computational performance optimizations connected with structured grid discretizations. However, many problems on geometrically complex domains are traditionally solved using fully unstructured (most frequently simplicial) meshes. We attempt to address this deficiency in the two-dimensional case by presenting a method which generates block structured grids with a prescribed number of blocks from an arbitrary triangular grid. High importance was assigned to mesh quality while simultaneously allowing for complex domains. Our method guarantees fulfillment of user-defined minimal element quality criteria—an essential feature for grid generators in simulations using finite element or finite volume methods. The performance of the proposed method is evaluated on grids constructed for regional ocean simulations utilizing two-dimensional shallow water equations.
Keywords
Block structured grids Quadrilateral grids High performance computing Shallow water equations Ocean simulationsNotes
Acknowledgements
This work has been supported by the German Research Foundation (DFG) under grant “Rechenleistungsoptimierte Software-Strategien für auf unstrukturierten Gittern basierende Anwendungen in der Ozeanmodellierung” (AI 117/6-1).
References
- 1.Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 25(1), 67–84 (2002). https://doi.org/10.1016/S0309-1708(01)00019-7. http://www.sciencedirect.com/science/article/pii/S0309170801000197
- 2.Aizinger, V., Dawson, C.: A discontinuous Galerkin method for three-dimensional shallow water flows with free surface. In: Miller, C.T., Farthing, M., Gray, W.G., Pinder, G.F. (eds.) Developments in Water Science. Computational Methods in Water Resources: Volume 2 Proceedings of the XVth International Conference on Computational Methods in Water Resources, vol. 55, pp. 1691–1702. Elsevier, Amsterdam (2004). https://doi.org/10.1016/S0167-5648(04)80177-1. http://www.sciencedirect.com/science/article/pii/S0167564804801771
- 3.Aizinger, V., Proft, J., Dawson, C., Pothina, D., Negusse, S.: A three-dimensional discontinuous Galerkin model applied to the baroclinic simulation of Corpus Christi Bay. Ocean Dyn. 63(1), 89–113 (2013). https://doi.org/10.1007/s10236-012-0579-8 CrossRefGoogle Scholar
- 4.Amenta, N., Bern, M., Eppstein, D.: Optimal point placement for mesh smoothing. J. Algorithms 30(2), 302–322 (1999)MathSciNetCrossRefGoogle Scholar
- 5.Armstrong, C.G., Fogg, H.J., Tierney, C.M., Robinson, T.T.: Common themes in multi-block structured quad/hex mesh generation. Proc. Eng. 124, 70–82 (2015)CrossRefGoogle Scholar
- 6.Bank, R.E., Smith, R.K.: Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34(3), 979–997 (1997)MathSciNetCrossRefGoogle Scholar
- 7.Boier-Martin, I., Rushmeier, H., Jin, J.: Parameterization of triangle meshes over quadrilateral domains. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 193–203. ACM, New York (2004)Google Scholar
- 8.Canann, S.A., Tristano, J.R., Staten, M.L., et al.: An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In: IMR, pp. 479–494. Citeseer (1998)Google Scholar
- 9.Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Rectangular multi-chart geometry images. In: Symposium on Geometry Processing, pp. 181–190 (2006)Google Scholar
- 10.Daniels II, J., Silva, C.T., Cohen, E.: Semi-regular quadrilateral-only remeshing from simplified base domains. In: Proceedings of the Symposium on Geometry Processing, SGP ’09, pp. 1427–1435. Eurographics Association, Aire-la-Ville, Switzerland (2009). http://dl.acm.org/citation.cfm?id=1735603.1735626
- 11.Dawson, C., Aizinger, V.: A discontinuous Galerkin method for three-dimensional shallow water equations. J. Sci. Comput. 22(1–3), 245–267 (2005). https://doi.org/10.1007/s10915-004-4139-3 MathSciNetCrossRefGoogle Scholar
- 12.Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pp. 1057–1066. ACM, New York (2006). https://doi.org/10.1145/1179352.1141993
- 13.Freitag, L.A.: On combining Laplacian and optimization-based mesh smoothing techniques. ASME Appl. Mech. 220, 37–44 (1997)Google Scholar
- 14.Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. Int. J. Numer. Methods Eng. 49(1–2), 109–125 (2000)CrossRefGoogle Scholar
- 15.Garanzha, V.A.: Barrier method for quasi-isometric grid generation. Zh. Vychisl. Mat. Mat. Fiz. 40(11), 1685–1705 (2000)MathSciNetzbMATHGoogle Scholar
- 16.Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM Press/Addison-Wesley, New York (1997)Google Scholar
- 17.Garland, M., Zhou, Y.: Quadric-based simplification in any dimension. ACM Trans. Graph. 24(2), 209–239 (2005)CrossRefGoogle Scholar
- 18.George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing. Hermes, Paris (1998)zbMATHGoogle Scholar
- 19.Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for Stokes solvers at the extreme scale. J. Comput. Sci. 17, 509–521 (2016)MathSciNetCrossRefGoogle Scholar
- 20.Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.: Performance modeling and tuning of an unstructured mesh cfd application. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC ’00. IEEE Computer Society, Washington (2000). http://dl.acm.org/citation.cfm?id=370049.370405
- 21.Huang, W.: Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys. 174(2), 903–924 (2001)MathSciNetCrossRefGoogle Scholar
- 22.Hülsemann, F., Bergen, B., Rüde, U.: Hierarchical hybrid grids as basis for parallel numerical solution of PDE. In: European Conference on Parallel Processing, pp. 840–843. Springer, Berlin (2003)Google Scholar
- 23.Kaltenbacher, M.: Numerical Simulation of Mechatronic Sensors and Actuators, vol. 2. Springer, Heidelberg (2007)zbMATHGoogle Scholar
- 24.Kuckuk, S., Köstler, H.: Automatic generation of massively parallel codes from ExaSlang. Computation 4(3), 27:1–27:20 (2016). https://doi.org/10.3390/computation4030027. http://www.mdpi.com/2079-3197/4/3/27. Special Issue on High Performance Computing (HPC) Software Design
- 25.Kuckuk, S., Haase, G., Vasco, D.A., Köstler, H.: Towards generating efficient flow solvers with the ExaStencils approach. Concurr. Comput. Pract. Exp. 29(17), 4062:1–4062:17 (2017). Special Issue on Advanced Stencil-Code EngineeringGoogle Scholar
- 26.Lengauer, C., Apel, S., Bolten, M., Größlinger, A., Hannig, F., Köstler, H., Rüde, U., Teich, J., Grebhahn, A., Kronawitter, S., Kuckuk, S., Rittich, H., Schmitt, C.: ExaStencils: advanced stencil-code engineering. In: Euro-Par 2014: Parallel Processing Workshops. Lecture Notes in Computer Science, vol. 8806, pp. 553–564. Springer, Berlin (2014)Google Scholar
- 27.Persson, P.O.: Mesh size functions for implicit geometries and PDE-based gradient limiting. Eng. Comput. 22(2), 95–109 (2006)CrossRefGoogle Scholar
- 28.Rank, E., Schweingruber, M., Sommer, M.: Adaptive mesh generation and transformation of triangular to quadrilateral meshes. Int. J. Numer. Methods Biomed. Eng. 9(2), 121–129 (1993)zbMATHGoogle Scholar
- 29.Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pp. 109–116. Eurographics Association, Aire-la-Ville, Switzerland (2007). http://dl.acm.org/citation.cfm?id=1281991.1282006
- 30.Wang, R., Shen, C., Chen, J., Gao, S., Wu, H.: Automated block decomposition of solid models based on sheet operations. Proc. Eng. 124, 109–121 (2015)CrossRefGoogle Scholar
- 31.White, B.S., McKee, S.A., de Supinski, B.R., Miller, B., Quinlan, D., Schulz, M.: Improving the computational intensity of unstructured mesh applications. In: Proceedings of the 19th Annual International Conference on Supercomputing, ICS ’05, pp. 341–350. ACM, New York (2005). https://doi.org/10.1145/1088149.1088195
- 32.Zint, D., Grosso, R.: Discrete mesh optimization on GPU. In: 27th International Meshing Roundtable (2018)Google Scholar