Advertisement

Voronoi Finite Volumes and Pressure Robust Finite Elements for Electrolyte Models with Finite Ion Sizes

  • Jürgen FuhrmannEmail author
  • Clemens Guhlke
  • Alexander Linke
  • Christian Merdon
  • Rüdiger Müller
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 131)

Abstract

Liquid electrolytes—fluids containing electrically-charged ions—occur in electrochemical energy conversion systems, nanofluidic devices, biological tissues and other systems. Numerical modeling provides a valuable tool to understand the strongly coupled nonlinear effects occurring in these systems. This paper reviews a recently developed strategy to simulate electro-osmotic flows with finite ion size constraints, which uses a Voronoi finite volume method to discretize charge distribution and ion transport. It demonstrates the demand for improved automatic mesh generation that is capable to provide problem dependent anisotropic meshes.

Notes

Acknowledgements

The research described in this paper has been supported by the German Federal Ministry of Education and Research Grant 03EK3027D (Network “Perspectives for Rechargeable Magnesium-Air batteries”) and Einstein Foundation Berlin within the Matheon Project CH11 “Sensing with Nanopores”.

References

  1. 1.
    Dreyer, W., Guhlke, C., Müller, R.: Overcoming the shortcomings of the Nernst–Planck model. Phys. Chem. Chem. Phys. 15(19), 7075–7086 (2013)CrossRefGoogle Scholar
  2. 2.
    Landstorfer, M., Guhlke, C., Dreyer, W.: Theory and structure of the metal-electrolyte interface incorporating adsorption and solvation effects. Electrochim. Acta 201, 187–219 (2016)CrossRefGoogle Scholar
  3. 3.
    Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst–Planck models. Comput. Phys. Commun. 196, 166–178 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fuhrmann, J.: A numerical strategy for Nernst–Planck systems with solvation effect. Fuel Cells 16(6), 704–714 (2016)CrossRefGoogle Scholar
  5. 5.
    Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fuhrmann, J., Linke, A., Langmach, H.: A numerical method for mass conservative coupling between fluid flow and solute transport. Appl. Numer. Math. 61(4), 530–553 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fuhrmann, J., Guhlke, C., Linke, A., Merdon, Ch., Müller, R.: Models and numerical methods for electrolyte flows. Preprint 2525, WIAS, Berlin (2018)Google Scholar
  9. 9.
    Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50, 38–53 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gajewski, H., Gärtner, K.: On the discretization of van Roosbroeck’s equations with magnetic field. ZAMM 76(5), 247–264 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, Th.: Numerical methods for drift-diffusion models. In: Piprek, J. (ed.) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, vol. 2, chapter 50, pp. 733–771. CRC Press, Boca Raton (2017)Google Scholar
  12. 12.
    Dreyer, W., Guhlke, C., Landstorfer, M.: A mixture theory of electrolytes containing solvation effects. Electrochem. Commun. 43, 75–78 (2014)CrossRefGoogle Scholar
  13. 13.
    Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Devices 16(1), 64–77 (1969)CrossRefGoogle Scholar
  14. 14.
    Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. SIAM J. Sci. Stat. Comput. 4(3), 416–435 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Eymard, R., Gallouët, Th., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier, Amsterdam (2000)Google Scholar
  16. 16.
    John, V.: Finite Element Methods for Incompressible Flow Problems. Springer, Cham (2016)CrossRefGoogle Scholar
  17. 17.
    Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)CrossRefGoogle Scholar
  18. 18.
    Siwy, Z., Fuliński, A.: Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89(19), 198103 (2002)CrossRefGoogle Scholar
  19. 19.
    Wolfram, M.T., Burger, M., Siwy, Z.S.: Mathematical modeling and simulation of nanopore blocking by precipitation. J. Phys. Condens. Matter 22(45), 454101 (2010)CrossRefGoogle Scholar
  20. 20.
    Fuhrmann, J., Streckenbach, T., et al.: pdelib. http://pdelib.org (2018)
  21. 21.
    Shewchuk, J.: Triangle: a two-dimensional quality mesh generator and Delaunay triangulator. http://www.cs.cmu.edu/~quake/triangle.html. Accessed 01 Jan 2017

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Fuhrmann
    • 1
    Email author
  • Clemens Guhlke
    • 1
  • Alexander Linke
    • 1
  • Christian Merdon
    • 1
  • Rüdiger Müller
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations