Advertisement

Why Do We Need Voronoi Cells and Delaunay Meshes?

  • Klaus GärtnerEmail author
  • Lennard Kamenski
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 131)

Abstract

Unlike other schemes that locally violate the essential stability properties of the analytic parabolic and elliptic problems, Voronoi finite volume methods (FVM) and boundary conforming Delaunay meshes provide good approximation of the geometry of a problem and are able to preserve the essential qualitative properties of the solution for any given resolution in space and time as well as changes in time scales of multiple orders of magnitude. This work provides a brief description of the essential and useful properties of the Voronoi FVM, which look like going more and more out of the mainstream over the last decades, and a motivation why Voronoi FVM deserve to be used more often in practice than they are currently.

References

  1. 1.
    Allen, D., Southwell, R.: Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl. Math. 8, 129–145 (1955)Google Scholar
  2. 2.
    Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)Google Scholar
  3. 3.
    Chew, P.L.: Constrained Delaunay triangulations. Algorithmica 4(1), 97–108 (1989)Google Scholar
  4. 4.
    Delaunay, B.: Sur La Sphére Vide. Izv. Akad. Nauk SSSR. Otd. Matem. i Estestv. Nauk 7, 793–800 (1934)Google Scholar
  5. 5.
    Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Elsevier Science B.V., Amsterdam (1997)Google Scholar
  6. 6.
    Fleischmann, P.: Mesh generation for technology CAD in three dimensions. Dissertation, Technische Universität, Wien (1999)Google Scholar
  7. 7.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)Google Scholar
  8. 8.
    Gajewski, H., Gärtner, K.: A dissipative discretization scheme for a nonlocal phase segregation model. Z. Angew. Math. Mech. 85, 815–822 (2005)Google Scholar
  9. 9.
    Gajewski, H., Gärtner, K.: On a nonlocal model of image segmentation. Z. Angew. Math. Phys. 56, 572–591 (2005)Google Scholar
  10. 10.
    Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)Google Scholar
  11. 11.
    Gärtner, K.: Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions. J. Comput. Electron. 14(3), 773–787 (2015)Google Scholar
  12. 12.
    Glitzky, A., Gärtner, K.: Energy estimates for continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. 70, 788–805 (2009)Google Scholar
  13. 13.
    Il’in, A.M.: A difference scheme for a differential equation with a small parameter multiplying the second derivative. Mat. Zametki 6, 237–248 (1969)Google Scholar
  14. 14.
    Kerkhoven, T.: Piecewise linear Petrov-Galerkin error estimates for the box method. SIAM J. Numer. Anal. 33(5), 1864–1884 (1996)Google Scholar
  15. 15.
    Kopteva, N.: Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations. Math. Comp. 83(289), 2061–2070 (2014)Google Scholar
  16. 16.
    Kopteva, N.: How accurate are finite elements on anisotropic triangulations in the maximum norm? J. Comput. Appl. Math. 364, 112316 (2020)Google Scholar
  17. 17.
    Kosik, R., Fleischmann, P., Haindl, B., Pietra, P., Selberherr, S.: On the interplay between meshing and discretization in three-dimensional diffusion simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(11), 1233–1240 (2000)Google Scholar
  18. 18.
    Lawson, C.L.: Software for C 1 surface interpolation. In: Mathematical Software III, pp. 161–194. Academic Press, New York (1977)Google Scholar
  19. 19.
    MacNeal, R.H.: An asymmetrical finite difference network. Quart. Math. Appl. 11, 295–310 (1953)Google Scholar
  20. 20.
    Rippa, S.: Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom. Design 7(6), 489–497 (1990)Google Scholar
  21. 21.
    Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electr. Dev. 16, 64–77 (1969)Google Scholar
  22. 22.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002)Google Scholar
  23. 23.
    Shewchuk, J.R.: General-dimensional constrained Delaunay and constrained regular triangulations. I. Combinatorial properties. Discrete Comput. Geom. 39(1–3), 580–637 (2008)Google Scholar
  24. 24.
    Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015)Google Scholar
  25. 25.
    Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50(1), 38–53 (2010)Google Scholar
  26. 26.
    Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)Google Scholar
  27. 27.
    Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Reine Angew. Math. 133, 97–178 (1907)Google Scholar
  28. 28.
    Xu, J., Zikatanov, L.: A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68(228), 1429–1446 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.m4sim GmbHBerlinGermany

Personalised recommendations