Structured Orthogonal Near-Boundary Voronoi Mesh Layers for Planar Domains

  • Vladimir GaranzhaEmail author
  • Liudmila Kudryavtseva
  • Valeriia Tsvetkova
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 131)


We consider the problem of constructing a purely Voronoi mesh where the union of uncut Voronoi cells approximates the planar computational domain with piecewise-smooth boundary. Smooth boundary fragments are approximated by the Voronoi edges and Voronoi vertices are placed near summits of sharp boundary corners. We suggest a self-organization meshing algorithm which covers the boundary of domain by an almost-structured band of non-simplicial Delaunay cells. This band consists of quadrangles on the smooth boundary segment and convex polygons around sharp corners. The dual Voronoi mesh is a double-layered orthogonal structure where the central line of the layer approximates the boundary. The overall Voronoi mesh has a hybrid structure and consists of high quality convex polygons in the core of the domain and orthogonal layered structure near boundaries. We introduce refinement schemes for the Voronoi boundary layers, in particular near sharp corners and discuss problems related to the generalization of the suggested algorithm in 3d.



Supported by the Russian Foundation for Basic Research (RFBR) under grant 18-01-00726 A.


  1. 1.
    Garimella, R., Kim, J., Berndt M.: Polyhedral mesh generation and optimization for non-manifold domains. In: Proceedings of the 22nd International Meshing Roundtable, pp. 313–330. Springer, Cham (2014)Google Scholar
  2. 2.
    Lee, S.Y.: Polyhedral mesh generation and a treatise on concave geometrical edges. Proc. Eng. 124, 174–186 (2015)CrossRefGoogle Scholar
  3. 3.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM, New York (1998)Google Scholar
  4. 4.
    Liu, Y., Wang, W., Levy, B., Sun, F., Yan, D.M., Lu, L., Yang C.: On centroidal Voronoi tessellation – energy smoothness and fast computation. ACM Trans. Graph. 28(4), 101 (2009)CrossRefGoogle Scholar
  5. 5.
    Budninskiy, M., Liu, B., De Goes, F., Tong, Y., Alliez, P., Desbrun M.: Optimal voronoi tessellations with hessian-based anisotropy. ACM Trans. Graph. 35(6), Article No. 242 (2016)Google Scholar
  6. 6.
    Tournois, J., Alliez, P., Devillers, O.: 2D centroidal voronoi tessellations with constraints. Numer. Math. Theory Methods Appl. 3(2), 212–222 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Levy, B., Liu, Y.: Lp centroidal voronoi tessellation and its applications. ACM Trans. Graph. 29(4), Art. 119 (2010)Google Scholar
  8. 8.
    Garanzha, V.A., Kudryavtseva, L.N.: Generation of three-dimensional Delaunay meshes from weakly structured and inconsistent data. Comput. Math. Math. Phys. 52(3), 427–447 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Persson, P.-O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21(3), 339–346 (2002)CrossRefGoogle Scholar
  11. 11.
    Ohtake, Y., Belyaev, A.: Dual/primal mesh optimization for polygonized implicit surfaces. In: Proceedings of the 7th ACM Symposium on Solid Modeling and Applications (SMA0́2), pp. 171–178. ACM, New York (2002)Google Scholar
  12. 12.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)CrossRefGoogle Scholar
  13. 13.
    Garanzha, V.A.: Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra. Comput. Math. Math. Phys. 50(1), 65–92 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gunther, F., Jiang, C., Pottmann, H.: Smooth polyhedral surfaces. arXiv:1703.05318 [math.MG] (2017)Google Scholar
  15. 15.
    Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang, W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25(3), 681–689 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir Garanzha
    • 1
    • 2
    Email author
  • Liudmila Kudryavtseva
    • 1
    • 2
    • 3
  • Valeriia Tsvetkova
    • 3
  1. 1.Dorodnicyn Computing Center FRC CSC RASMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Keldysh Institute of Applied Mathematics RASMoscowRussia

Personalised recommendations