Advertisement

Modeling Anaerobic Digestion Using Stochastic Approaches

  • Oussama Hadj Abdelkader
  • A. Hadj Abdelkader
Chapter

Abstract

In this paper, we aim to use stochastic modeling approaches in order to build a model for an anaerobic digestion process. We consider a two-species and two-substrate process which is usually modeled in the deterministic context using the Anaerobic Model AM2. This model features four states representing, respectively, the concentrations of the substrate, the acidogenic bacteria, the volatile fatty acids, and the methanogenic bacteria. We propose here to build a stochastic version of this model by using three types of models: the pure jump Markov process, the Poisson model, and the Gaussian model. The pure jump Markov process is the most detailed one, it is hence valid at a microscopic size, i.e., for small-size bacteria populations, whereas the two others, which are two discrete-time approximations of the first model, are valid for the mesoscopic and macroscopic scales, which means, for medium-size and large-size bacteria populations. We also present the diffusion model which is the continuous version of the Gaussian approximation and is valid for mesoscopic and macroscopic scales. The validity domain is justified in the paper and a brief comparison between these models and with respect to the deterministic AM2 model is discussed and presented by simulation.

Keywords

Bioreactor Anaerobic digestion Pure jump process Diffusion process Stochastic differential equations Stochastic models Poisson approximation Normal approximation 

References

  1. 1.
    D.J. Batstone, J. Keller, I. Angelidaki, S.V. Kalyuzhnyi, S.G. Pavlostathis, A. Rozzi, W.T.M. Sanders, H. Siegrist, V. A. Vavilin, The IWA anaerobic digestion model no. 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002)Google Scholar
  2. 2.
    F. Blumensaat, J. Keller, Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 39(1), 171–183 (2005)Google Scholar
  3. 3.
    C. Rosen, D. Vrecko, K.V. Gernaey, M-N. Pons, U. Jeppsson, Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink. Water Sci. Technol. 54(4), 11–19 (2006)CrossRefGoogle Scholar
  4. 4.
    D.J. Batstone, J. Keller, J. P. Steyer, A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Sci. Technol. 54(4), 1–10 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Hassam, B. Cherki, E. Ficara, J. Harmand, Towards a systematic approach to reduce complex bioprocess models—Application to the ADM1, in 2012 20th Mediterranean Conference on Control & Automation (MED) (IEEE, Piscataway, 2012), pp. 573–578Google Scholar
  6. 6.
    O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, J-P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)CrossRefGoogle Scholar
  7. 7.
    J. Hess, O. Bernard, Advanced dynamical risk analysis for monitoring anaerobic digestion process. Biotechnol. Prog. 25(3), 643–653 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Rincon, F. Angulo, G. Olivar, Control of an anaerobic digester through normal form of fold bifurcation. J. Process Control 19(8), 1355–1367 (2009)CrossRefGoogle Scholar
  9. 9.
    J.P. Steyer, O. Bernard, D. Batstone, I. Angelidaki, Lessons learnt from 15 years of ICA in anaerobic digesters. Water Sci. Technol. 53(4–5), 25–33 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Hess, O. Bernard, Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. J. Process Control 18(1), 71–79 (2008)CrossRefGoogle Scholar
  11. 11.
    B. Benyahia, T. Sari, B. Cherki, J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. J. Process Control 22(6), 1008–1019 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Benyahia, T. Sari, B. Cherki, J. Harmand, Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP)–the Anaerobic Model AM2b. Chem. Eng. J. 228, 1011–1022 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Hassam, E. Ficara, A. Leva, J. Harmand, A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochem. Eng. J. 99, 193–203 (2015)Google Scholar
  14. 14.
    F. Campillo, M. Joannides, I. Larramendy-Valverde, Stochastic modeling of the chemostat. Ecol. Model. 222(15), 2676–2689 (2011)CrossRefGoogle Scholar
  15. 15.
    F. Campillo, M. Joannides, Modeles logistiques deterministes et stochastiques, in CARI 2010 (2010), pp. 110–118Google Scholar
  16. 16.
    J. Monod, The growth of bacterial cultures. Annu. Rev. Microbiol. 3(1), 371–394 (1949)CrossRefGoogle Scholar
  17. 17.
    H.L. Smith, P.E. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  18. 18.
    D.J. Wilkinson, Stochastic Modelling for Systems Biology (Chapman and Hall/CRC, Milton, 2006)zbMATHGoogle Scholar
  19. 19.
    D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)CrossRefGoogle Scholar
  20. 20.
    S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, vol. 282 (Wiley, New York, 2009)zbMATHGoogle Scholar
  21. 21.
    D.F. Anderson, A. Ganguly, T.G. Kurtz et al., Error analysis of tau-leap simulation methods. Ann. Appl. Probab. 21(6), 2226–2262 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    T. Li, Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. Multiscale Model. Simul. 6(2), 417–436 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Rathinam, L.R. Petzold, Y. Cao, D.T. Gillespie, Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model. Simul. 4(3), 867–895 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.T. Gillespie, L.R. Petzold, Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. 119(16), 8229–8234 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oussama Hadj Abdelkader
    • 1
  • A. Hadj Abdelkader
    • 1
  1. 1.LAT, Laboratoire d’Automatique de TlemcenUniversité de TlemcenTlemcenAlgeria

Personalised recommendations