Advertisement

Metabolic Imaging of Brain Metastasis

  • Norbert GalldiksEmail author
  • Bogdana Suchorska
  • Nathalie L. Albert
  • Jörg C. Tonn
Chapter

Abstract

Brain metastases from extracranial cancer are associated with significant morbidity and mortality. Local treatment options are neurosurgical resection and radiotherapy, e.g., radiosurgery or fractionated external beam radiotherapy. Furthermore, systemic treatment options for control of both intracranial and extracranial disease are increasingly gaining importance. Usually, diagnosis, treatment planning, and follow-up is based on contrast-enhanced magnetic resonance imaging (MRI). However, structural imaging modalities have limitations, particularly in terms of the diagnosis of posttherapeutic reactive changes as well as the assessment of treatment response. Metabolic imaging techniques such as positron emission tomography (PET) can characterize specific metabolic and cellular features which may provide clinically relevant information beyond structural MRI.

Keywords

Brain metastases Amino acid PET FDG PET FET PET Radiosurgery Pseudoprogression 

References

  1. 1.
    Langen KJ, Galldiks N, Hattingen E, shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13(5):279–89.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Langen KJ, Galldiks N. Update on amino acid PET of brain tumours. Curr Opin Neurol. 2018;31(4):354–61.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Pope WB. Brain metastases: neuroimaging. Handb Clin Neurol. 2018;149:89–112.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Galldiks N, Law I, Pope WB, Arbizu J, Langen KJ. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. Neuroimage Clin. 2017;13:386–94.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Camidge DR, Lee EQ, Lin NU, Margolin K, Ahluwalia MS, Bendszus M, et al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 2018;19(1):e20–32.CrossRefGoogle Scholar
  6. 6.
    Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.CrossRefGoogle Scholar
  9. 9.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18(9):1199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Galldiks N, Albert NL, Sommerauer M, Grosu AL, Ganswindt U, Law I, et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol. 2017;19(12):1576–87.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Langen KJ, Watts C. Neuro-oncology: amino acid PET for brain tumours—ready for the clinic? Nat Rev Neurol. 2016;12(7):375–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Papin-Michault C, Bonnetaud C, Dufour M, Almairac F, Coutts M, Patouraux S, et al. Study of LAT1 expression in brain metastases: towards a better understanding of the results of positron emission tomography using amino acid tracers. PLoS One. 2016;11(6):e0157139.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Herholz K, Langen KJ, Schiepers C, Mountz JM. Brain tumors. Semin Nucl Med. 2012;42(6):356–70.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bergström M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr. 1983;7:1062–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Galldiks N, Langen KJ, Pope WB. From the clinician’s point of view—what is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol. 2015;17(11):1434–44.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med. 2013;54(7):1007–10.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999;40(1):205–12.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Langen KJ, Tonn JC, Weller M, Galldiks N. Letter to the Editor: “The role of imaging in the management of progressive glioblastoma. A systematic review and evidence-based clinical practice guideline” [J Neurooncol 2014; 118:435–460]. J Neurooncol. 2014;120:665–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Langen KJ, Jarosch M, Mühlensiepen H, Hamacher K, Broer S, Jansen P, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol. 2003;30(5):501–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27(5):542–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, et al. An interindividual comparison of O-(2- [(18)F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-(11)C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011;81(4):1049–58.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Swissmedic. Swiss Agency for therapeutic products. J Swissmedic. 2014;13:651.Google Scholar
  24. 24.
    Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30(11):1561–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99(2):217–25.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wiriyasermkul P, Nagamori S, Tominaga H, Oriuchi N, Kaira K, Nakao H, et al. Transport of 3-fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause of the tumor uptake in PET. J Nucl Med. 2012;53(8):1253–61.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Youland RS, Kitange GJ, Peterson TE, Pafundi DH, Ramiscal JA, Pokorny JL, et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neurooncol. 2013;111(1):11–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1–18.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Haining Z, Kawai N, Miyake K, Okada M, Okubo S, Zhang X, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin Pathol. 2012;12:4.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Galldiks N, Stoffels G, Filss CP, Piroth MD, Sabel M, Ruge MI, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med. 2012;53(9):1367–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Ceccon G, Lohmann P, Stoffels G, Judov N, Filss CP, Rapp M, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol. 2017;19(2):281–8.PubMedGoogle Scholar
  32. 32.
    Romagna A, Unterrainer M, Schmid-Tannwald C, Brendel M, Tonn JC, Nachbichler SB, et al. Suspected recurrence of brain metastases after focused high dose radiotherapy: can [18F]FET-PET overcome diagnostic uncertainties? Radiat Oncol. 2016;11(1):139.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[(18)F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015;42(5):685–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 2015;17(9):1293–300.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med. 2011;36(10):841–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43(6):1105–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56(1):9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jansen NL, Suchorska B, Wenter V, Eigenbrod S, Schmid-Tannwald C, Zwergal A, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55(2):198–203.PubMedCrossRefGoogle Scholar
  39. 39.
    Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J, et al. Intra-individual comparison of (18)F-FET and (18)F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol. 2014;16(3):434–40.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Moulin-Romsée G, D’ondt E, de Groot T, Goffin J, Sciot R, Mortelmans L, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging. 2007;34(12):2082–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Juhasz C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014;13  https://doi.org/10.2310/7290.2014.00015.CrossRefGoogle Scholar
  42. 42.
    Kamson DO, Mittal S, Buth A, Muzik O, Kupsky WJ, Robinette NL, et al. Differentiation of glioblastomas from metastatic brain tumors by tryptophan uptake and kinetic analysis: a positron emission tomographic study with magnetic resonance imaging comparison. Mol Imaging. 2013;12(5):327–37.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Salgarello M, Lunardi G, Inno A, Pasetto S, Severi F, Gorgoni G, et al. 18F-NaF PET/CT imaging of brain metastases. Clin Nucl Med. 2016;41(7):564–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gori S, Inno A, Lunardi G, Gorgoni G, Malfatti V, Severi F, et al. 18F-sodium fluoride PET-CT for the assessment of brain metastasis from lung adenocarcinoma. J Thorac Oncol. 2015;10(8):e67–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    O’Sullivan CC, Lindenberg M, Bryla C, Patronas N, Peer CJ, Amiri-Kordestani L, et al. ANG1005 for breast cancer brain metastases: correlation between (18)F-FLT-PET after first cycle and MRI in response assessment. Breast Cancer Res Treat. 2016;160(1):51–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lu Y. FDG and (82)Rb PET/MRI features of brain metastasis of breast cancer. Clin Nucl Med. 2015;40(6):494–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chakraborty PS, Kumar R, Tripathi M, Das CJ, Bal C. Detection of brain metastasis with 68Ga-labeled PSMA ligand PET/CT: a novel radiotracer for imaging of prostate carcinoma. Clin Nucl Med. 2015;40(4):328–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chan M, Hsiao E, Turner J. Cerebellar metastases from prostate cancer on 68Ga-PSMA PET/CT. Clin Nucl Med. 2017;42(3):193–4.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Nguyen NC, Yee MK, Tuchayi AM, Kirkwood JM, Tawbi H, Mountz JM. Targeted therapy and immunotherapy response assessment with F-18 fluorothymidine positron-emission tomography/magnetic resonance imaging in melanoma brain metastasis: a pilot study. Front Oncol. 2018;8:18.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Imperiale A, Bergerat JP, Saussine C, Abu Eid M, Kehrli P, Namer IJ. Isolated cerebellar metastasis from prostate adenocarcinoma diagnosed by 18F-fluorocholine PET/CT: a rare but not impossible complication. Eur J Nucl Med Mol Imaging. 2014;41(2):397–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gizewska A, Witkowska-Patena E, Stembrowicz-Nowakowska Z, Buraczewska A, Dziuk M. Brain metastases in patient with prostate cancer found in 18F-choline PET/CT. Nucl Med Rev Cent East Eur. 2015;18(1):39–41.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    O’Brien ER, Kersemans V, Tredwell M, Checa B, Serres S, Soto MS, et al. Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker. J Nucl Med. 2014;55(2):275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Manohar K, Bhattacharya A, Mittal BR. Low positive yield from routine inclusion of the brain in whole-body 18F-FDG PET/CT imaging for noncerebral malignancies: results from a large population study. Nucl Med Commun. 2013;34(6):540–3.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Nia ES, Garland LL, Eshghi N, Nia BB, Avery RJ, Kuo PH. Incidence of brain metastases on follow-up (18)F-FDG PET/CT scans of non-small cell lung cancer patients: should we include the brain? J Nucl Med Technol. 2017;45(3):193–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Krüger S, Mottaghy FM, Buck AK, Maschke S, Kley H, Frechen D, et al. Brain metastasis in lung cancer. Comparison of cerebral MRI and 18F-FDG-PET/CT for diagnosis in the initial staging. Nuklearmedizin. 2011;50(3):101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Li Y, Jin G, Su D. Comparison of Gadolinium-enhanced MRI and 18FDG PET/PET-CT for the diagnosis of brain metastases in lung cancer patients: a meta-analysis of 5 prospective studies. Oncotarget. 2017;8(22):35743–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Unterrainer M, Galldiks N, Suchorska B, Kowalew LC, Wenter V, Schmid-Tannwald C, et al. (18)F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis. J Nucl Med. 2017;58(4):584–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Purandare NC, Puranik A, Shah S, Agrawal A, Gupta T, Moiyadi A, et al. Common malignant brain tumors: can 18F-FDG PET/CT aid in differentiation? Nucl Med Commun. 2017;38(12):1109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Meric K, Killeen RP, Abi-Ghanem AS, Soliman F, Novruzov F, Cakan E, et al. The use of 18F-FDG PET ratios in the differential diagnosis of common malignant brain tumors. Clin Imaging. 2015;39(6):970–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, et al. Prognostic significance of L-type amino acid transporter 1 expression in resectable stage I-III nonsmall cell lung cancer. Br J Cancer. 2008;98(4):742–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yanagisawa N, Ichinoe M, Mikami T, Nakada N, Hana K, Koizumi W, et al. High expression of L-type amino acid transporter 1 (LAT1) predicts poor prognosis in pancreatic ductal adenocarcinomas. J Clin Pathol. 2012;65(11):1019–23.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pafundi DH, Laack NN, Youland RS, Parney IF, Lowe VJ, Giannini C, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 2013;15(8):1058–67.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Munck Af Rosenschold P, Costa J, Engelholm SA, Lundemann MJ, Law I, Ohlhues L, et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol. 2015;17(5):757–63.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shah AH, Snelling B, Bregy A, Patel PR, Tememe D, Bhatia R, et al. Discriminating radiation necrosis from tumor progression in gliomas: a systematic review what is the best imaging modality? J Neurooncol. 2013;112(2):141–52.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217(2):377–84.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;May;15(6):48.CrossRefGoogle Scholar
  67. 67.
    Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol. 2011;103(1):137–46.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tomura N, Kokubun M, Saginoya T, Mizuno Y, Kikuchi Y. Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among (11)C-methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC-preliminary results. AJNR Am J Neuroradiol. 2017;38(8):1520–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Lai G, Mahadevan A, Hackney D, Warnke PC, Nigim F, Kasper E, et al. Diagnostic accuracy of PET, SPECT, and arterial spin-labeling in differentiating tumor recurrence from necrosis in cerebral metastasis after stereotactic radiosurgery. AJNR Am J Neuroradiol. 2015;36(12):2250–5.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hatzoglou V, Yang TJ, Omuro A, Gavrilovic I, Ulaner G, Rubel J, et al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol. 2016;18(6):873–80.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49(5):694–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg. 2003;98(5):1056–64.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, Matsuo Y, et al. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One. 2015;10(7):e0132515.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AA, Yong WH, Phelps ME, et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med. 2014;55(1):30–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015;42(1):103–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Chernov M, Hayashi M, Izawa M, Ochiai T, Usukura M, Abe K, et al. Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multi-voxel proton MRS. Minim Invasive Neurosurg. 2005;48(4):228–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Heinzel A, Müller D, Yekta-Michael SS, Ceccon G, Langen KJ, Mottaghy FM, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis. Neuro Oncol. 2017;19(9):1271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kickingereder P, Götz M, Muschelli J, Wick A, Neuberger U, Shinohara RT, et al. Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res. 2016;22(23):5765–71.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Peeken JC, Nusslin F, Combs SE. “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol. 2017;193(10):767–79.PubMedCrossRefGoogle Scholar
  80. 80.
    Galldiks N, Langen KJ. Amino acid PET in neuro-oncology: applications in the clinic. Expert Rev Anticancer Ther. 2017;17(5):395–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP, et al. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. Eur Radiol. 2017;27(7):2916–27.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin. 2018;20:537–42.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Parakh S, Park JJ, Mendis S, Rai R, Xu W, Lo S, et al. Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases. Br J Cancer. 2017;116(12):1558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015;11(9):504–14.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Roth P, Valavanis A, Weller M. Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab. Neuro Oncol. 2017;19(3):454–6.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kebir S, Rauschenbach L, Galldiks N, Schlaak M, Hattingen E, Landsberg J, et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro Oncol. 2016;18(10):1462–4.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kulkarni HR, Singh A, Langbein T, Schuchardt C, Mueller D, Zhang J, et al. Theranostics of prostate cancer: from molecular imaging to precision molecular radiotherapy targeting the prostate specific membrane antigen. Br J Radiol. 2018;91:20180308.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, et al. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med. 2018;32:503–11.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Werner RA, Bundschuh RA, Bundschuh L, Javadi MS, Higuchi T, Weich A, et al. Molecular imaging reporting and data systems (MI-RADS): a generalizable framework for targeted radiotracers with theranostic implications. Ann Nucl Med. 2018;32:512–22.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Unterrainer M, Fleischmann DF, Lindner S, Brendel M, Rupprecht R, Tonn JC, et al. Detection of cerebrospinal fluid dissemination of recurrent glioblastoma using TSPO-PET with 18F-GE-180. Clin Nucl Med. 2018;43(7):518–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96(3):191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Belohlavek O, Simonova G, Kantorova I, Novotny J Jr, Liscak R. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging. 2003;30(1):96–100.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Yomo S, Oguchi K. Prospective study of (11)C-methionine PET for distinguishing between recurrent brain metastases and radiation necrosis: limitations of diagnostic accuracy and long-term results of salvage treatment. BMC Cancer. 2017;17(1):713.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Norbert Galldiks
    • 1
    • 2
    • 3
    Email author
  • Bogdana Suchorska
    • 4
    • 5
  • Nathalie L. Albert
    • 5
    • 6
  • Jörg C. Tonn
    • 4
    • 5
  1. 1.Department of NeurologyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Neuroscience and Medicine (INM-3), Research Center JuelichJuelichGermany
  3. 3.Center of Integrated Oncology (CIO)Universities of Aachen, Bonn, Cologne, and DuesseldorfCologneGermany
  4. 4.Department of NeurosurgeryLudwig Maximilians-University of MunichMunichGermany
  5. 5.German Cancer Consortium (DKTK), Partner Site MunichMunichGermany
  6. 6.Department of Nuclear MedicineLudwig Maximilians-University of MunichMunichGermany

Personalised recommendations