Advertisement

Lentil (Lens culinaris Medik.) Diversity, Cytogenetics and Breeding

  • Rafiul Amin Laskar
  • Samiullah Khan
  • Chitta Ranjan Deb
  • Nasya Tomlekova
  • Mohammad Rafiq Wani
  • Aamir Raina
  • Ruhul Amin
Chapter

Abstract

Lentil (Lens culinaris Medik. ssp. culinaris) is one of the oldest cultivated plants that originated from L. culinaris Medik.ssp. orientalis in the Near East arc and Asia Minor. This cool season legume crop is an excellent food source to provide energy, proteins and iron in the human diet. Most lentil-growing countries have a shared objective of higher and more stable seed yield, which often entails breeding for adaptation to abiotic and biotic stresses, which otherwise cause a substantial reduction in crop yield and production. Lentil domestication and selection over thousands of years led to the low amount of genetic variation in the current cultivated species and this scarcity in genetic variability represents a major constraint for lentil breeding. Thus far, lentil breeders have been successful in improving some easily manageable monogenic traits using conventional breeding techniques of selection and recombination. However, these conventional techniques are insufficient to address economic traits like seed yield due to polygenic inheritance and genotype-environment interaction. Other species of the genus Lens are important sources of genetic variation for breeding key traits into new lentil varieties. Induced mutagenesis is a powerful breeding tool and can greatly supplement the availability of lentil genomic resources. Impressive progress in applications of biotechnological innovations in the utilization of genetic resources for lentil genetic improvement will further accelerate the development of improved varieties. This chapter provides an overview on present status of lentil genetic improvement and summarizes the various important aspects of lentil diversity, cytogenetic and breeding.

Keywords

Biodiversity Cytogenetics Genomic tools Lentil Micromutations Mutation breeding Stress biology 

Notes

Acknowledgement

The authors are thankful to the Aligarh Muslim University, Aligarh, India for providing research facilitates and University Grants Commission (UGC), India for providing financial assistance.

References

  1. Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173CrossRefGoogle Scholar
  2. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135(2):187–204CrossRefGoogle Scholar
  3. Akcay UC, Mahmoudian M, Kamci H et al (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik.). Plant Cell Rep 28:407–417.  https://doi.org/10.1007/s00299-008-0652-4CrossRefPubMedGoogle Scholar
  4. Aldemir S, Ateş D, Temel HY et al (2017) QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk J Agric For 41:243–255CrossRefGoogle Scholar
  5. Ali M, Gupta S (2012) Carrying capacity of Indian agriculture: pulse crops. Curr Sci 102:874–881Google Scholar
  6. Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J 6(12):1589–1601Google Scholar
  7. Amin R, Laskar RA, Khan S (2015) Assessment of genetic response and character association for yield and yield components in lentil (Lens culinaris L.) population developed through chemical mutagenesis. Cogent Food Agric 1:1000715.  https://doi.org/10.1080/23311932.2014.1000715CrossRefGoogle Scholar
  8. Andrews M, Mckenzie BA (2007) Adaptation and ecology. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil-an ancient crop for modern times. Springer, Dordrecht, pp 23–32Google Scholar
  9. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9(3):208–218CrossRefGoogle Scholar
  10. Asnake F, Bejiga G (2003) Breeding lentil for wider adaptation in forage and food legumes of Ethiopia: progress and prospects. In: Kemal A, Gemechu K, Seid A et al (eds) Proceedings of the workshop on food and forage legumes. EIAR and ICARDA, Aleppo/Addis Ababa, pp 80–86Google Scholar
  11. Ates D, Aldemir S, Alsaleh A et al (2018a) A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One 13(1):e0191375.  https://doi.org/10.1371/journal.pone.0191375CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ates D, Aldemir S, Yagmur B et al (2018b) QTL mapping of genome regions controlling manganese uptake in lentil seed. G3 Genes Genomes Genet.  https://doi.org/10.1534/g3.118.200259
  13. Atif RM, Patat-Ochatt EM, Svabova L et al (2013) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany, vol 74. Springer, Berlin/Heidelberg, pp 37–100.  https://doi.org/10.1007/978-3-642-30967-0_2CrossRefGoogle Scholar
  14. Auerbach C (1965) Past achievements and future task of research in chemical mutagenesis. Proc 11th Int Cong Genet 2:275–284Google Scholar
  15. Auerbach C, Robson JM (1942) Experiments on the action of mustard gas in Drosophila, production of sterility and mutation. RepMinistSupp 3979Google Scholar
  16. Azadbakht L, Kimiagar M, Mehrabi Y et al (2007) Dietary soya intake alters plasma antioxidant status and lipid peroxidation in postmenopausal women with the metabolic syndrome. Brit J Nutrit 98:807–813PubMedGoogle Scholar
  17. Bagheri A, Omraan VG, Hatefi S (2012) Indirect in vitro regeneration of lentil (Lens culinaris Medik.). J Plant Mol Breed 1:43–50Google Scholar
  18. Bajaj YP, Dhanju MS (1979) Regeneration of plants from apical meristem tips of some legumes. Curr Sci 84(20):906–907Google Scholar
  19. Barbana C, Boye JI (2011) Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: determination of the kinetics of inhibition. Food Chem 127:94–101CrossRefGoogle Scholar
  20. Baum M, Erskine W, Ramsay G (1997) Biotechnology and genetic resource of grain legumes: lentil and faba beans. In: Watanabe KN, Pehu E (eds) Plant biotechnology and plant genetic resource for sustainability and productivity. RG Landes Company/Academic Press Inc, Austin, pp 117–132Google Scholar
  21. Bejiga G (2006) Lens culinaris Medik. In: Brink M, Belay G (eds) Plant resources of tropical Africa, Cereals and pulses, vol 1. Prota Foundation/Backhuys Publishers/CTA, Leiden/Wageningen, pp 91–96Google Scholar
  22. Bejiga G, Tessema T (1981) Identification on the optimum time of emasculation and pollination to increase percentage of hybrid seed set in chickpea. J Agric Sci 3:129–134Google Scholar
  23. Bermejo C, Espósito M, Cravero V et al (2012) In vitro plant regeneration from cotyledonary nodes of recombinant inbred lines of lentil. Sci Hortic 134:13–19.  https://doi.org/10.1016/j.scienta.2011.11.029CrossRefGoogle Scholar
  24. Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-016-1065-7
  25. Bett K, Ramsay L, Chan C et al (2016) The lentil genome – from the sequencer to the field. In: International conference on pulses, Marrakesh, Morocco, 18–20 April, AbstractGoogle Scholar
  26. Bhat TA, Wani AA (2017) Mutagenic effects on meiosis in legumes and a practical case study of Vicia faba L. In: Bhat T, Wani A (eds) Chromosome structure and aberrations. Springer Nature, New Delhi, pp 219–244CrossRefGoogle Scholar
  27. Bhat TA, Khan AH, Parveen S (2007) Spectrum and frequency of chlorophyll mutations induced by MMS, gamma rays and their combinations in two varieties of Vicia faba L. Asian J Plant Sci 6(3):558–561CrossRefGoogle Scholar
  28. Bhosle SS, Kothekar VS (2010) Mutagenic efficiency and effectiveness in cluster bean (Cyamopsis tetragonoloba (L ) Taub ). J Phytol 2(6):21–27Google Scholar
  29. Bind D, Dwivedi VK, Singh SK (2016) Induction of chlorophyll mutations through physical and chemical mutagenesis in cowpea [Vigna unguiculata (L ) Walp]. Int J Adv Res 4(2):49–53Google Scholar
  30. Blixt S, Mossberg R (1967) Studies of induced mutations in peas, XX A preliminary test of the mutagenicity of different chemicals. Agric Hort Genet 25:105–111Google Scholar
  31. Boye JI, Roufik S, Pesta N, Barbana C (2010) Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci Technol 43:987–991CrossRefGoogle Scholar
  32. Branch WD (2002) Variability among advanced gamma-irradiation induced large seeded mutant breeding lines in the ‘Georgia Brown’ peanut cultivar. Plant Breed 121:275–277CrossRefGoogle Scholar
  33. Brock RD (1965) Induced mutations affecting quantitative characters. In: The use of induced mutations in plant breeding. Rad Bot (Suppl) 5:451–464Google Scholar
  34. Canci H, Cagirgan MI, Toker C (2004) Genotypic variation for root and shoot growth at seedling stage in chickpea mutants. Int Chickpea Pigeonpea Newsl 11:11–12Google Scholar
  35. Chhabra G, Chaudhary D, Varma M et al (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14:347–353.  https://doi.org/10.1007/s12298-008-0033-zCrossRefPubMedGoogle Scholar
  36. Chhun T, Taketa S, Tsurumi S, Ichii M (2003) Interaction between two auxinresistant mutants and their effects on lateral root formation in rice (Oryza sativa L.). J Exp Bot 393:2701–2708CrossRefGoogle Scholar
  37. Chopra VL (2005) Mutagenesis, investigating the process and processing the outcome for crop improvement. Curr Sci 89(2):353–359Google Scholar
  38. Chopra R, Prabhakar A, Saini R (2011) The role of thidiazuron on somatic embryogenesis in lentil (Lens culinaris Medik). Ann Agri Bio Res J Agri Bio Res 16:1–5Google Scholar
  39. Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in plant a electroporation-mediated gene transfer. Mol Biotechnol 5:85–96.  https://doi.org/10.1007/bf02789058CrossRefPubMedGoogle Scholar
  40. Cokkizgin A, Shtaya MJY (2013) Lentil: origin, cultivation techniques, utilization and advances in transformation. Agric Sci 1(1):55–62Google Scholar
  41. Crujeiras AB, Parra D, Abete I, Martinez JA (2007) A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic Res 41:498–506CrossRefPubMedGoogle Scholar
  42. Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95.  https://doi.org/10.3390/resources2020073CrossRefGoogle Scholar
  43. Cubero JI (1981) Origin, taxonomy and domestication. In: Webb C, Hawtin GC (eds) Lentils. Commonwealth Agricultural Bureau, Slough, pp 15–38Google Scholar
  44. Cubero JI, Perez De La Vega M, Frantini R (2009) Origin, phylogeny, domestication and spread. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil – botany, production and uses. CABI, Wallingford, pp 13–33CrossRefGoogle Scholar
  45. Das SK, Shethi KJ, Hoque MI, Sarker RH (2012) Agrobacteriummediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult Biotechnol 22:13–26.  https://doi.org/10.3329/ptcb.v22i1.11243CrossRefGoogle Scholar
  46. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171CrossRefPubMedGoogle Scholar
  47. David S, Mukandala L, Mafuru J (2002) Seed availability, an ignored factor in crop varietal adoption studies: a case study of beans in Tanzania. J Sustain Agric 21:5–20CrossRefGoogle Scholar
  48. De Vries H (1901) Die mutation theorie. Viet and Co, Leipzig. Obit. Blakeslee AF (1935) Hugo de Vries 1848–1935. Science 81:581–582Google Scholar
  49. Desouky O, Ding N, Zhou G (2015) Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 8:247–254CrossRefGoogle Scholar
  50. Dhuppar P, Biyan S, Chintapalli B, Rao S (2012) Lentil crop production in the context of climate change: an appraisal. Indian Res J Ext Educ 2:33–35Google Scholar
  51. Dixit P, Dubey DK (1986) Karyotype study in lentil. LENS Newsl 13(1):8–10Google Scholar
  52. Donini P, Sonnino A (1998) Induced mutation in plant breeding. In: Jain SM, Dar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutation in crop plants: current and future outlook. Kluwer Academic Publishers, Netherlands, pp 255–292CrossRefGoogle Scholar
  53. Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York, pp 52–57CrossRefGoogle Scholar
  54. Duran Y, Fratini R, Garcia P, De la Vega MP (2004) An intersubspecific genetic map of Lens. Theor Appl Genet 108:1265–1273CrossRefPubMedGoogle Scholar
  55. Encheva J (2009) Creating sunflower mutant lines (Helianthus annuus L.) using induced mutagenesis. Bulg J Agric Sci 15:109–118Google Scholar
  56. Erskine W, Adham Y, Holly L (1989) Geographic distribution of variation in quantitative characters in a world lentil collection. Euphytica 43:97–103CrossRefGoogle Scholar
  57. Erskine W, Chandra S, Chaudhury M et al (1998) A bottleneck in lentil: widening the genetic base in South Asia. Euphytica 101:207–211CrossRefGoogle Scholar
  58. Esmaillzadeh A, Azadbakht L (2012) Legume consumption is inversely associated with serum concentrations of adhesion molecules and inflammatory biomarkers among Iranian women. J Nutr 142:334–339CrossRefPubMedGoogle Scholar
  59. Eujayl I, Baum M, Powell W et al (1998) A genetic linkage map of lentil (Lens sp) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89CrossRefGoogle Scholar
  60. FAO (2009) How to feed the world in 2050. FAO, RomeGoogle Scholar
  61. FAO (2011) Save and grow- a policy maker’s guide to the sustainable intensification of smallholder crop production. FAO, RomeGoogle Scholar
  62. FAO (2018) Production share of lentils by region. FAOSTAT www.fao.org/statistics/
  63. Faris MAE, Takruri HR, Issa AY (2013) Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab 6(1):3–16CrossRefGoogle Scholar
  64. Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress effects, mechanisms and management. Agron Sustain Dev 29(1):185–212CrossRefGoogle Scholar
  65. Ferguson M (2000) Lens spp: conserved resources, priorities for collection and future prospects. In: Knight R (ed) Proceedings of the third international food legumes research conference: linking research and marketing opportunities for pulses in the 21st century. Current plant science and biotechnology in agriculture, vol 34, Adelaide, Australia, September 22–26, 1997. Kluwer Academic Publishers, Dordrecht, pp 613–620Google Scholar
  66. Ferguson ME, Erskine W (2001) Lentils (Lens L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. KluwerAcademic Publishers, Dordrecht, pp 132–157Google Scholar
  67. Ferguson M, Ford-Lloyd BV, Robertson LD et al (1998) Mapping the geographical distribution of genetic variation in the genus Lens for the enhanced conservation of plant genetic diversity. Mol Ecol 7:1743–1755CrossRefGoogle Scholar
  68. Ferguson ME, Maxted N, Van Slageren M, Robertson LD (2000) A re-assessment of the taxonomy of Lens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41–59CrossRefGoogle Scholar
  69. Fiala JV, Tullu A, Banniza S et al (2009) Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medik.). Crop Sci 49:825–830.  https://doi.org/10.2135/cropsci2008.05.0260CrossRefGoogle Scholar
  70. Ford R, Rubeena RRJ et al (2007) Lentil. In: Kole C (ed) Genome mapping and molecular breeding in plants: pulses, sugar and tuber crops, vol 3. Springer, Berlin/Heidelberg, pp 91–108CrossRefGoogle Scholar
  71. Fratini RM, de la Vega MP, Sánchez MLR (2014) Lentil. In: Singh M, Bisht IS, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 115–148Google Scholar
  72. Gaffarzadeh-Namazi L, Asghari-Zakaria R, Babaeian N, Kazemi-Tabar K (2007) Comparative study of chromosome morphology and C-banding patterns in several genotypes of Lens culinaris. Pak J Biol Sci 10:1811–1816CrossRefPubMedGoogle Scholar
  73. Gaikwad NB, Kothekar VS (2004) Mutagenic effectiveness and efficiency of ethylmethane sulphonate and sodium azide in lentil (Lens culinaris Medik.). Indian J Genet 64(1):73–74Google Scholar
  74. Gatti I, Guindón F, Bermejo C et al (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Organ Cult 127(3):543–559.  https://doi.org/10.1007/s11240-016-1082-6CrossRefGoogle Scholar
  75. Gaul H (1964) Mutations in plant breeding. Radiat Bot 4:155–232CrossRefGoogle Scholar
  76. Gaul H (1965) The concept of macro and micromutations in barley. Rad Bot (Suppl) 5:407–428Google Scholar
  77. Girija M, Dhanavel D (2009) Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and their combined treatments in cowpea (Vigna unguiculata (L.) Walp). Global J Mol Sci 4(2):68–75Google Scholar
  78. Goodspeed TB (1929) The effects of X-rays and radium on species of genus Nicotiana. J Hered 20:243–259CrossRefGoogle Scholar
  79. Gottschalk W (1978a) The dependence of the penetrance of mutant genes on environment and genotypic background. Genetics 49:21–29Google Scholar
  80. Gottschalk W (1978b) Prospects and limits of mutation breeding. Indian Agric 22:65–69Google Scholar
  81. Gottschalk W (1986) Experimental mutagenesis in plant breeding. In: Prasad AB (ed) Mutagenesis: basic and applied. Print House, Lucknow, pp 81–96Google Scholar
  82. Gottschalk W, Wolff G (1983) Induced mutations in plant breeding. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  83. Goyal S, Khan S (2010a) Induced mutageneis in urdbean (Vigna mungo L. Hepper): a review. Int J Bot 6(3):194–206CrossRefGoogle Scholar
  84. Goyal S, Khan S (2010b) Differential response of single and combined treatment in moist seeds of urdbean. Indian J Bot Res 6(1/2):183–188Google Scholar
  85. Goyal S, Khan S, Alka PR (2009) A comparison of mutagenic effectiveness and efficiency of EMS, SA and gamma rays in mungbean. Indian J Appl Pure Biol 24(1):125–128Google Scholar
  86. Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large scale reverse - genetic screen in Arabidopsis. Genetics 164:731–740PubMedPubMedCentralGoogle Scholar
  87. Grover IS, Tejpaul SK (1982) Cytogenetical effects of gamma rays and maleic hydrazide in mung bean. Acta Bot Ind 10:210–216Google Scholar
  88. Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik.) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38:316–324.  https://doi.org/10.1079/ivp2002303CrossRefGoogle Scholar
  89. Gupta PK, Bahl JR (1983) Cytogenetics and origin of some pulse crops. In: Swaminathan MS, Gupta PK, Sinha U (eds) Cytogenetics of crop plants. Macmillan India, New Delhi, pp 405–440Google Scholar
  90. Gupta PK, Singh J (1981) Standard karyotype in lentil var. Pant L-639. LENS (Lentil Experimental News Service) 8:23Google Scholar
  91. Gupta D, Taylor PWJ, etal IP (2012) IntegrationofEST-SSRmarkersofMedicago truncatula intointraspecificlinkage mapoflentilandidentificationofQTLconferringresistancetoascochytablightatseedlingandpod stages. Mol Breed 30:429–439CrossRefGoogle Scholar
  92. Gustafsson A (1947) Mutations in agricultural plants. Hereditas 33:1–99CrossRefGoogle Scholar
  93. Hamwieh A, Udupa SM, Choumane W et al (2005a) A genetic linkage map of Lens sp based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677CrossRefPubMedGoogle Scholar
  94. Hamwieh A, Udupa S, Choumane W et al (2005b) A genetic linkage map of Lens sp. Based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677.  https://doi.org/10.1007/s00122-004-1892-5CrossRefPubMedGoogle Scholar
  95. Hamwieh A, Udupa SM, Sarker A et al (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86.  https://doi.org/10.1270/jsbbs.59.77CrossRefGoogle Scholar
  96. Han W, Yu KN (2010) Ionizing radiation, DNA double strand break and mutation. In: Urbano KV (ed) Advances in genetics research, vol 4. Nova Science Publishers Inc, Hauppauge, pp 1–13Google Scholar
  97. Handro W (1981) Mutagenesis and in vitro selection. In: Thorpe TA (ed) Plant tissue culture. Academic Press Inc, New York, pp 155–179CrossRefGoogle Scholar
  98. Harlan J (1992) Crops and man. American Society of Agronomy, MadisonGoogle Scholar
  99. Harlan JR, De Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  100. Havey MJ, Muehlbauer FJ (1989) Linkages between restrictions fragment length, isozyme and morphological markers in lentil. Theor Appl Genet 77:395–401.  https://doi.org/10.1007/bf00305835CrossRefPubMedGoogle Scholar
  101. Helbeck H (1963) Late Cypriote vegetable diet in Apliki. Act Instit Athen Reg Sueciae Ser 4(8):171–186Google Scholar
  102. Helbeck H (1970) The plant industry in Hacilar. In: Mellart J (ed) Excavations at Hacilar. Occas. Pub Brit Inst Archael, Ankara Edinburgh Univ Press 1(9):189–244Google Scholar
  103. Hopf M (1962) Bericht Uber die Untersuchung von Samen und Holzkohlenresten von der Argissa- Magula aus den prakermischen bis mittelbronzezeitlichen Schichten. In: Milojcic V, Boessneck J, Hopf M (eds) Die Deutschen Ausgrabungen auf der Argissa-Magula in Thessalien. I. Rudolf Habelt Verlag, Bonn, pp 101–119Google Scholar
  104. Ilbas AI, Eroglu Y, Eroglu HE (2005) Effect of the application of different concentrations of SA for different times on the morphological and cytogenetic characteristics of barley (Hordeum vulgare L.) seedling. Acta Bot Sin 47:1101–1106Google Scholar
  105. Jain SM (2002) Feeding the world with induced mutations and biotechnology. In: Proceedings of the international nuclear conference on global trends and perspectives seminar 1: agriculture and bioscience. MINT, Bangi, pp 1–14Google Scholar
  106. Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (2017) Biotechnologies for plant mutation breeding: protocol. International Atomic Energy Agency, ViennaCrossRefGoogle Scholar
  107. Javed MA, Khatri A, Khan IA et al (2000) Utilization of gamma irradiation for the genetics improvement of oriental mustard (Brassica juncea Coss). Pak J Bot 32:77–83Google Scholar
  108. Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004) QTL mapping of winter hardness genes in lentil. Crop Sci 44:13–22CrossRefGoogle Scholar
  109. Kamble GC, Patil AS (2014) Comparative mutagenicity of EMS and gamma radiation in wild chickpea. Int J Sci Technol 3:166–180Google Scholar
  110. Kaul MLH (1989) Mutation research in dilemma. In: Bir SS, Saggo MIS (eds) Perspectives in plant sciences in India. Today and TomorrowPub, New Delhi, pp 93–108Google Scholar
  111. Kaul MLH, Nirmala C (1999) Biotechnology Miracle or Mirage IV. In vivo and in vitro mutagenesis. In: Siddiqui BA, Khan S (eds) Breeding in crop plants mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, pp 80–88Google Scholar
  112. Kay D (1979) Food legumes tropical development and research institute (TPI). In: TPI Crop and Product Digest, vol 3. Tropical Products Institute, London, pp 48–71Google Scholar
  113. Kebeish R, Deef HE, El-Bialy N (2015) Effect of gamma radiation on growth, oxidative stress, antioxidant system, and Alliin producing gene transcripts in Allium sativum. Int J Res Stud Biosci 3(3):161–174Google Scholar
  114. Khan S (1990) Studies on chemical mutagenesis in mungbean (Vigna radiata (L.) Wilczek). Ph.D. Thesis, Aligarh Muslim University, AligarhGoogle Scholar
  115. Khan S (1997) Concepts in mutagenesis. In: Siddiqui BA, Khan S (eds) Plant breeding advances and in vitro culture. CBS Pub, New Delhi, pp 98–107Google Scholar
  116. Khan S, Siddiqui BA (1992a) Effect of selection for improvement of quantitative characters in mutated population of mungbean (Vigna radiata (L.) Wilczek). J Indian Bot Soc 71:69–71Google Scholar
  117. Khan S, Siddiqui BA (1992b) Mutagenic effectiveness and efficiency of chemical mutagens in Vigna radiata (L.) Wilczek. Thai J Agric Sci 25:291–297Google Scholar
  118. Khan MH, Tyagi SD (2010) Studies on effectiveness and efficiency of gamma rays, EMS and their combination in soybean (Glycine max (L.) Merrill). J Plant Breed Crop Sci 2(3):55–58Google Scholar
  119. Khan S, Wani MR, Parveen K (2006) Sodium azide induced high yielding early mutant in lentil. Agric Sci Dig 26(1):65–66Google Scholar
  120. Khan S, Parveen K, Goyal S (2011) Induced mutations in chickpea-morphological mutants. Front Agric China 5(1):35–39CrossRefGoogle Scholar
  121. Kharkwal MC (1996) Accomplishments of mutation breeding in crop improvement in India. In: Sachdev MS, Sachdev P, Deb DL (eds) Isotopes and radiations in agriculture and environment research. Indian Society for Nuclear Techniques in Agriculture and Biology. Nuclear Research Laboratory, IARI, New Delhi, pp 196–218Google Scholar
  122. Kharkwal MC (1998) Induced mutations in chickpea (Cicer arietinum L.) I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J Genet 58(2):159–167Google Scholar
  123. Khatib F, Makris A, Yamaguchi-Shinozaki K et al (2011) Expression of the DREB1A gene in lentil (Lens culinaris Medik. subsp culinaris) transformed with the Agrobacterium system. Crop Past Sci 62:488–495.  https://doi.org/10.1071/cp10351CrossRefGoogle Scholar
  124. Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the World’s agro-ecological zones. Front Plant Sci 7:1093.  https://doi.org/10.3389/fpls.2016.01093CrossRefPubMedPubMedCentralGoogle Scholar
  125. Khentry Y, Wang SH, Ford R (2014) In vitro propagation of six parental lentil (Lens culinaris ssp. culinaris) genotypes. US Open Agric J 1:1–8. http://arepub.com/Journals.phpGoogle Scholar
  126. Khorramdelazad M, Bar I, Whatmore P et al (2018) Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 19:108.  https://doi.org/10.1186/s12864-018-4488-1CrossRefPubMedPubMedCentralGoogle Scholar
  127. Khosh-Khui M, Niknejad M (1972) Plant height and width inheritance and their correlation with some of the yield components in chickpea. J Agric Sci 78:37–38CrossRefGoogle Scholar
  128. Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–203PubMedGoogle Scholar
  129. Konzak CF, Nilan RA, Wagner J, Foster RJ (1965) Efficient chemical mutagenesis. Radiat Bot 5:49–70Google Scholar
  130. Kozgar MI, Wani MR, Tomlekova NB, Khan S (2014) Induced mutagenesis in edible crop plants and its impact on human beings. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis-exploring novel genes and pathways. Wageningen Academic Publishers, Netherlands, pp 167–182CrossRefGoogle Scholar
  131. Kumar S, Bejiga G, Ahmed S et al (2010) Genetic improvement of grass pea for low neurotoxin (b-ODAP) content. Food Chem Toxicol 49:589–600CrossRefPubMedGoogle Scholar
  132. Kumar S, Hamweih A, Manickavelu A et al (2014) Advances in lentil genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in omics era. Springer Science Business Media, New York, pp 111–130CrossRefGoogle Scholar
  133. Kumar S, Rajendran K, Kumar J et al (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:1–13.  https://doi.org/10.3389/fpls.2015.00078CrossRefGoogle Scholar
  134. Ladizinsky G (1979) The origin of lentil and its wild genepool. Euphytica 28:179–187CrossRefGoogle Scholar
  135. Ladizinsky G (1992) Crossability relations. Monogr Theor Appl Genet 16:15–31CrossRefGoogle Scholar
  136. Ladizinsky G (1997) A new species of Lens from south-east Turkey. Bot J Linn Soc 123:257–260Google Scholar
  137. Ladizinsky G (1999) Identification of the lentil wild genetic stock. Genet Resour Crop Evol 46:115–118CrossRefGoogle Scholar
  138. Ladizinsky G, Abbo S (1993) Cryptic speciation in Lens culinaris. Genet Resour Crop Evol 40:1–5CrossRefGoogle Scholar
  139. Ladizinsky G, Braun D, Goshen D, Muehlbauer FJ (1984) The biological species of the genus Lens. Bot Gaz 154:253–261CrossRefGoogle Scholar
  140. Laskar RA, Khan S (2014) Mutagenic effects of MH and MMS on induction of variability in broad bean (Vicia faba L.). Ann Res Rev Biol 4(7):1129–1140CrossRefGoogle Scholar
  141. Laskar RA, Khan S (2017) Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLoS One 12(9):e0184598.  https://doi.org/10.1371/journal.pone.0184598CrossRefPubMedPubMedCentralGoogle Scholar
  142. Laskar RA, Khan H, Khan S (2015a) Chemical mutagenesis: theory and practical application in Vicia faba L. Lap Lambert Academic Publishing, GermanyGoogle Scholar
  143. Laskar RA, Khan S, al KS (2015b) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14(3):102–111CrossRefGoogle Scholar
  144. Laskar RA, Laskar AA, Raina A et al (2018a) Induced mutation analysis using biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179CrossRefPubMedGoogle Scholar
  145. Laskar RA, Chaudhary C, Khan S, Chandra A (2018b) Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping. J Saudi Soc Agric Sci 17:51–60Google Scholar
  146. Laskar RA, Wani MR, Raina A et al (2018c) Morphological characterization of gamma rays induced multipoddingmutant (mp) in lentil cultivar Pant L 406. Int J Radiat Biol.  https://doi.org/10.1080/09553002.2018.1511927
  147. Lavania UC, Lavania S (1983) Karyotype studies in Indian pulses. Genet Agrar 37:299–308Google Scholar
  148. Lombardi M, Materne M, Cogan NOI et al (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik,) cultivars and landraces using SNP markers. BMC Genet 15:150.  https://doi.org/10.1186/s12863-014-0150-3CrossRefPubMedPubMedCentralGoogle Scholar
  149. Lurquin PF, Cai Z, Stiff CM, Fuerst EP (1998) Half-embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars to Agrobacterium tumefaciens. Mol Biotechnol 9:175–179.  https://doi.org/10.1007/BF02760819CrossRefPubMedGoogle Scholar
  150. Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combine use of physical and chemical mutagens. Israel J Plant Sci 49(4):279–284Google Scholar
  151. Mahmoudian M, Yucel M, Oktem HA (2002) Transformation of lentil (Lens culinaris M) cotyledonary nodes by vacuum infiltration of Agrobacterium tumefaciens. Plant Mol Biol Report 20:251–257.  https://doi.org/10.1007/bf02782460CrossRefGoogle Scholar
  152. Maluszynski M (2001) Officially released mutant varieties -the FAO/IAEA Database. Plant Cell Tissue Organ Cult 65:175–177CrossRefGoogle Scholar
  153. Maluszynski M, Ahloowalia BS, Sigurbijornsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315CrossRefGoogle Scholar
  154. Maluszynski M, Szarejko I, Maluszynska J (2004) Mutation techniques. Encycl Appl Plant Sci 1–3:186–201Google Scholar
  155. Manju P, Gopimony R (2009) Anjitha – a new okra variety through induced mutation in interspecific hybrids of Abelmoschus spp. In: Shu QY (ed) Induced plant mutation in the genomic era. FAO, Rome, pp 87–90Google Scholar
  156. Materne M, McNeil D (2007) Breeding methods and achievements. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Spinger, Dordrecht, pp 241–253CrossRefGoogle Scholar
  157. Materne M, Siddique KHM (2009) Agroecology and crop adaptation. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil – botany, production and uses. CABI, Wallingford, pp 47–63CrossRefGoogle Scholar
  158. Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231CrossRefGoogle Scholar
  159. Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7CrossRefGoogle Scholar
  160. Mehandjiev A (2005) Role of experimental mutagenesis for genetic improvement of peas and soybean. In: Datta SK (ed) Role of classical mutation breeding in crop improvement. Daya Publishing House, Delhi, pp 73–98Google Scholar
  161. Micke A (1988) Genetic improvement of grain legumes using induced mutations. In: Improvement of grain legume production using induced mutations. IAEA, Vienna, pp 1–51Google Scholar
  162. Micke A (1995) Radiation mutagenesis for genetic improvement of plants. In: Sharma B, Kulshreshtha VP, Gupta N, Mishra SK (eds) Genetic research and education: current trends and the next fifty years. Indian Society of Genetics and Plant Breeding, New Delhi, pp 1129–1142Google Scholar
  163. Micke A (1999) Mutations in plant breeding. In: Siddiqui BA, Khan S (eds) Breeding in crop plants mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, pp 1–19Google Scholar
  164. Mishra SK, Sharma B, Sharma SK (2007) Genetics and cytogenetics of lentil. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordecht, pp 187–208CrossRefGoogle Scholar
  165. Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2014) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev Biol Plant 51(1):71–79.  https://doi.org/10.1007/s11627-014-9647-8CrossRefGoogle Scholar
  166. Mohamed MF, Read PE, Coyne DP (1992) Plant regeneration from in vitro culture of embryonic axis explants in common and tepary beans. J AmSoc Hort Sci 117:332–336CrossRefGoogle Scholar
  167. Mohan D, Mathur VL (2015) Efficiency and effectiveness of chemical mutagens in black gram [Vigna mungo (L) Hepper]. Ann Biol 31(1):58–63Google Scholar
  168. Momin KC, Gonge VS, Dalal SR, Bharad SG (2012) Radiation induced variability studies in chrysanthemum under net house. Asian J Hortic 7(2):524–527Google Scholar
  169. Mondal S, Petwal VC, Badigannavara AM et al (2017) Electron beam irradiation revealed genetic differences in radio-sensitivity and generated mutants in groundnut (Arachis hypogaea L.). Appl Rad Isotopes 122:78–83CrossRefGoogle Scholar
  170. Muehlbauer FJ (1992) Use of introduced germplasm in cool-season food legume cultivar development. In: Shands HL, Weisner LE (eds) Use of plant introductions in cultivar development. Part 2. Crop Science Society of America (CSSA) Special Publication, vol 20. CSSA, Madison, pp 49–73Google Scholar
  171. Muehlbauer FJ, McPhee KE (2005) Lentil (Lens culinaris Medik.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. CRC Press, Taylor & Francis Group, Boca Raton, pp 219–230Google Scholar
  172. Muehlbauer FJ, Slinkard AE, Wilson VE (1980) Lentil. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. Amer Soc Agron, Madison, pp 417–426Google Scholar
  173. Muehlbauer FJ, Cubero JI, Summerfield RJ (1985) Lentil (Lens culinarisMedik.). In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 266–311Google Scholar
  174. Muehlbauer FJ, Kaiser WJ, Clement SL, Summerfield RJ (1995) Production and breeding of lentil. Adv Agron 54:283–332CrossRefGoogle Scholar
  175. Muehlbauer FJ, Cho S, Sarker A et al (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165CrossRefGoogle Scholar
  176. Muehlbauer FJ, Mihov MA, Vandenberg A et al (2009) Improvement in developed countries. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil-botany, production and uses. CABI, Wallingford, pp 137–154CrossRefGoogle Scholar
  177. Muller HJ (1927) Artificial transmutation of genes. Science 66:84–144CrossRefPubMedGoogle Scholar
  178. Nakagawa H, Annai T, Okabe A et al (2011) Mutation breeding of soybean in Japan. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, pp 55–84Google Scholar
  179. Natarajan AT (2005) Chemical mutagenesis: from plants to humans. Curr Sci 89(2):312–317Google Scholar
  180. Nene YL (2006) Indian Pulses through the millennia. Asian Agric Hist 10:179–202Google Scholar
  181. Novak FJ, Brunner H (1992) Plant breeding induced mutation technology for crop improvement. IAEA Bull 4:25–33Google Scholar
  182. Oktem H, Mahmoudian M, Yucel M (1999) GUS gene delivery and expression in lentil cotyledonary nodes using particle bombardment. LENS Newsl 26:3–6Google Scholar
  183. Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16CrossRefGoogle Scholar
  184. Omran VG, Bagheri A, Moshtaghi N (2008) Direct in vitro regeneration of lentil (Lens culinaris Medik). Pak J Biol Sci 11:2237–2242.  https://doi.org/10.3923/pjbs.2008.2237.2242CrossRefPubMedGoogle Scholar
  185. Ozdemir S (2002) Grain legume crops. Hasad Publishing, IstanbulGoogle Scholar
  186. Özdemir FA, Türker M (2014) In vitro plant regeneration influence by BAP and IBA in lentils (Lens culinaris Medik). J Appl Biol Sci 8:22–27Google Scholar
  187. Parry MA, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825CrossRefPubMedGoogle Scholar
  188. Patil A, Taware SP, Raut VM (2004) Induced variation in quantitative traits due to physical (γ rays), chemical (EMS) and combined mutagen treatments in soybean [Glycine max (L.) Merrill]. Soybean Genet Newsl 31:1–6Google Scholar
  189. Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume (Lotus japonicas). Plant Physiol 131:866–871CrossRefPubMedPubMedCentralGoogle Scholar
  190. Polanco MC, Pelaez MI, Ruiz ML (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Cult 15(2):175–182CrossRefGoogle Scholar
  191. Pundir RP, Reddy KN (1984) Comparison of cross-pollination methods in chickpea. Int Chickpea Newslet 11:9–11Google Scholar
  192. Rahman MM, Sarker A, Kumar S et al (2009) Breeding for short season environments. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil – botany, production and uses. CABI, Wallingford, pp 121–136CrossRefGoogle Scholar
  193. Raina A, Laskar RA, Khursheed S et al (2017) Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Let Nat Sci 61:14–22Google Scholar
  194. Rajput MA, Sarwar G, Siddiqui KA (2001) Development of high yielding mutants in lentil. Mut Breed Newsl 45:35Google Scholar
  195. Ranalli P (2012) The role of induced plant mutations in the present era. In: Kozgar MI, Khan S (eds) Induced mutagenesis in crop plants: bioremediation, biodiversity and bioavailability.special issue 6(1):1–5Google Scholar
  196. Rapoport IA (1966) Peculiarities and mechanisms of action of supermutagens. Supermutagens Publishing House, Nawka, pp 9–23Google Scholar
  197. Redden B, Maxted N, Furman B, Coyne C (2007) Lens biodiversity. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 11–22CrossRefGoogle Scholar
  198. Reddy VRK, Annadurai M (1992) Cytological effects of different mutagens in lentil (Lens culinaris Medik.). Cytologia 57:213–216CrossRefGoogle Scholar
  199. Reddy AA, Reddy GP (2010) Supply side constrains in production of pulses in India: a case study of lentil. Agric Econ Res Rev 23:129–136Google Scholar
  200. Renfrew JM (1969) The archaeological evidence for the domestication of plants: methods and problem. In: Ucko PJ, Dimbleby GW (eds) Domestication and exploitation of plants and animals. Aldine, ChicagoGoogle Scholar
  201. Riaz A, Gul A (2015) Plant mutagenesis and crop improvement. In: Hakeem KR (ed) Crop production and global environmental issues. Springer International Publishing Switzerland, Cham, pp 181–210CrossRefGoogle Scholar
  202. Rizkalla SW, Bellisle F, Slama G (2002) Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Brit J Nutr 88:255–262CrossRefGoogle Scholar
  203. Rojo FP, Nyman RKM, Johnson AAT et al (2018) CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered 9(1):214–221.  https://doi.org/10.1080/21655979.2018.1470720CrossRefGoogle Scholar
  204. Rubeena FR, Taylor PWJ (2003) Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor Appl Genet 107:910–916.  https://doi.org/10.1007/s00122-003-1326-9CrossRefPubMedGoogle Scholar
  205. Saha GB (2013) Radiation biology in physics and radiobiology of nuclear medicine. Springer Science + Business Media, New York.  https://doi.org/10.1007/978-1-4614-4012-3CrossRefGoogle Scholar
  206. Saha GC, Sarker A, Chen W et al (2010a) Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci 50:1831–1839CrossRefGoogle Scholar
  207. Saha GC, Sarker A, Chen W et al (2010b) Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175:261–265CrossRefGoogle Scholar
  208. Saha S, Tullu A, Yuan HY et al (2015) Improvement of embryo rescue technique using 4-chloroindole- 3-acetic acid in combination with in vivo grafting to overcome barriers in lentil interspecific crosses. Plant Cell Tissue Organ Cult 120:109–116.  https://doi.org/10.1007/s11240-014-0584-3CrossRefGoogle Scholar
  209. Saleem MY, Mukhtar Z, Cheema AA, Atta BM (2005) Induced mutation and in vitro techniques as a method to induce salt tolerance in Basmati rice (Oryza sativa L.). Int J Environ Sci Technol 2(2):141–145CrossRefGoogle Scholar
  210. Salnikova TV (1995) Achievements of chemical mutagenesis in the breeding of cultivated plants in the USSR. In: III. New Delhi (ed) Genetic research and education: current trends and the next fifty years, pp 1196–1209Google Scholar
  211. Sandhu JS, Singh S (2009) History and origin. In: Shyam S, Yadav DL, McNeil P, Stevenson C (eds) Lentil-an ancient crop for modern times. Springer, Dordrecht, pp 1–10Google Scholar
  212. Sari E, Bhadauria V, Ramsay L et al (2018) Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS One 13(9):e0204124.  https://doi.org/10.1371/journal.pone.0204124.eCollection2018CrossRefPubMedPubMedCentralGoogle Scholar
  213. Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Agric Sci (Camb) 144:1–11CrossRefGoogle Scholar
  214. Sarker A, Sharma B (1989) Effect of mutagenesis on M1 parameters in lentil. LENS 16(2):8–10Google Scholar
  215. Sarker A, Aydin N, Aydogan A et al (2002) Winter lentils promise improved nutrition and income in West Asian Highlands. ICARDA Caravan 16:14–16Google Scholar
  216. Sarker RH, Mustafa BM, Biswas A et al (2003) In vitro regeneration in lentil (Lens culinaris Medik.). Plant Tissue Cult 13:155–163Google Scholar
  217. Sarker A, Aydogan A, Chandra S et al (2009) Genetic enhancement for yield and yield stability. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil-botany, production and uses. CABI, Wallingford, pp 102–120CrossRefGoogle Scholar
  218. Sarker RH, Subroto K, Hoque MI (2012) In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cell Dev Biol Plant 48:446–452.  https://doi.org/10.1007/s11627-012-9444-1CrossRefGoogle Scholar
  219. Sehirali S (1998) Grain legume crops. Ankara University, Faculty of Agricultural Engineering, Ankara 1089(314):435Google Scholar
  220. Sevimay CS, Khawar KM, Yuzbasioglu E (2005) Adventitious shoot regeneration from different explants of wild lentil (Lens culinaris subsp. orientalis). Biotechnol Biotechnol Equip 19(2):46–49.  https://doi.org/10.1080/13102818.2005.10817189CrossRefGoogle Scholar
  221. SGSV (2017) Svalbardv Global Seed Vault 10 year technical and financial report 2007–2016. https://www.seedvault.no/documentsreports/
  222. Shah TM, Mirza JI, Haq MA, Atta BM (2008) Induced genetic variability in chickpea (Cicer arietinumL.) II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Pak J Bot 40(2):605–613Google Scholar
  223. Shams H, Tahbaz F, Entezari M, Abadi A (2008) Effects of cooked lentils on glycemic control and blood lipids of patients with type 2 diabetes. ARYA Athero J 3:215–218Google Scholar
  224. Sharma B (1985) Chemical mutagens. In: Advances in chromosome and cell genetics. Oxford and IBH Pub Co, New Delhi, pp 255–283Google Scholar
  225. Sharma B (2009) Genetics of economic traits. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil: botany, production and uses. CABI, Wallingford, pp 76–101CrossRefGoogle Scholar
  226. Sharpe AG, Ramsay L, Sanderson LA et al (2013) Ancient orphan crop joins modern era: gene based SNP discovery and mapping in lentil. BMC Genomics 14:192.  https://doi.org/10.1186/1471-2164-14-192CrossRefPubMedPubMedCentralGoogle Scholar
  227. Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI, WallingfordCrossRefGoogle Scholar
  228. Siddiqui BA (1999) Mutagenesis- tools and techniques: a practical view. In: Siddiqui BA, Khan S (eds) Breeding in crop plants mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, pp 20–34Google Scholar
  229. Siddiqui KA, Yousufzai MN (1988) Natural and induced variation for endomorphic traits in the tribe Triticeae. In: Proceeding of 7th Wheat Genet Symp. Cambridge, UK, pp 139–143Google Scholar
  230. Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics, functional genomics and breeding. Int J Plant Genom 2011:314829Google Scholar
  231. Silim SN, Saxana MC, Singh KB (1993a) Adaptation of spring-sown chickpea to the Mediterranean basin II. Factors influencing yield under drought. Field Crop Res 34:137–141CrossRefGoogle Scholar
  232. Silim SN, Saxana MC, Erskine W (1993b) Adaptation of lentil to the Mediterranean environment II. Response to moisture supply. Exp Agric 29:112–118Google Scholar
  233. Sinclair TR, Vadez V (2012) The future of grain legumes in cropping systems. Crop Past 63:501–512Google Scholar
  234. Sindhu JS, Lal SB, Singh RP (1981) Studies on the factors determining crossing success in chickpea (Cicer arietinum). Pulse Crops Newsl 1:21–22Google Scholar
  235. Sindhu JS, Slinkard AE, Scoles GJ (1983) Studies on variation in Lens I. Karyotype. LENS 10(1):14Google Scholar
  236. Singh AK (2007) Mutagenic effectiveness and efficiency of gamma rays and ethylmethane sulphonate in mungbean. Madras Agric J 94(1–6):7–13Google Scholar
  237. Solanki IS, Sharma B (1994) Mutagenic effectiveness and efficiency of gamma rays, ethyl imine and N-nitroso-N-ethyl urea in macrosperma lentil (Lens culinaris Medik.). Indian J Genet 54:72–76Google Scholar
  238. Solanki IS, Sharma B (1999) Induction and isolation of morphological mutations in different damage groups in lentil (Lens culinaris Medik.). Indian J Genet 59(4):479–485Google Scholar
  239. Srinivasachar D, Mohandas TK (1971) Effect of the mutagens hydroxylamine, ethyl methane sulphonate and gamma rays separately and in combination on meiotic chromosomes. Caryologia 24(1):1–11CrossRefGoogle Scholar
  240. Stadler LJ (1928) Mutations in barley induced by X-rays and radium. Science 68:186–187CrossRefPubMedGoogle Scholar
  241. Subroto KD, Kishwar JS, Hoque MI, Sarker RH (2012) Agrobacterium- mediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult Biotechnol 22(1):13–26.  https://doi.org/10.3329/ptcb.v22i1.11243CrossRefGoogle Scholar
  242. Sultana T, Ghafoor A (2008) Genetic diversity in ex- situ conserved Lens culinaris for botanical descriptors, biochemical and molecular markers and identification of landraces from indigenous genet resource. Pak J Integr Plant Biol 50:484–490CrossRefGoogle Scholar
  243. Takruri HR, Issa AY (2013) Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab 6(1):3–16CrossRefGoogle Scholar
  244. Taku K, Umegaki K, Sato Y et al (2007) Soy isoflavones lower serum total and LDL cholesterol in humans: A meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 85:1148–1156CrossRefPubMedGoogle Scholar
  245. Talame V, Bovina R, Sanguineti MC et al (2008) Till more, a resource for the discovery of chemically induced mutants in barley. J Plant Biotechnol 6:477–485Google Scholar
  246. Tanyolac B, Ozatay S, Kahraman A, Muehlbauer F (2010) Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbred lines revealed by AFLP, ISSR, RAPD and some morphologic markers. J Agric Biotech Sust Dev 2(1):1–6Google Scholar
  247. Tavallaie F, Ghareyazie B, Bagheri A, Sharma K (2011) Lentil regeneration from cotyledon explant bearing a small part of the embryo axis. Plant Tissue Cult and Biotechnol 21:169–180.  https://doi.org/10.3329/ptcb.v21i2.10240CrossRefGoogle Scholar
  248. Temel HY, Gol D, Kahriman A, Tanyolac MB (2014) Single nucleotide polymorphism discovery through Illumina-based transcriptome sequencing and mapping in lentil. Turk J Agric For 38:1–19.  https://doi.org/10.3906/tar-1409-70CrossRefGoogle Scholar
  249. Tivoli B, Baranger A, Avila CM et al (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253CrossRefGoogle Scholar
  250. Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in (Cicer reticulatum Ladizinsky). Genet Resour Crop Evol 56:7–12CrossRefGoogle Scholar
  251. Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil-an ancient crop for modern times. Springer, Dordrecht, pp 209–224Google Scholar
  252. Tomlekova NB (1998) The mechanism of resistance to (A. obtectus) in beans (P. vulguris L.). Agric Sci 5:19–21Google Scholar
  253. Tomlekova NB (2010) Induced mutagenesis for crop improvement in Bulgaria. Plant Mut Rep 2(2):1–32Google Scholar
  254. Tomlekova NB, Todorova V, Petkova V et al (2009) Creation and evaluation of induced mutants for pepper breeding programmes. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 187–190Google Scholar
  255. Tomlekova NB, Kozgar MI, Wani MR (2014) Mutagenesis-exploring novel genes and pathways. Wageningen Academic Publishers, WageningenCrossRefGoogle Scholar
  256. Tullu A, Buchwaldt L, Warkentin T et al (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106:428–434CrossRefPubMedGoogle Scholar
  257. Tullu A, Bett K, Banniza S et al (2013) Widening the genetic base of cultivated lentil through hybridization of Lens culinaris “Eston” and L. ervoides accession IG 72815. Can J Plant Sci 93:1037–1047.  https://doi.org/10.4141/cjps2013-072CrossRefGoogle Scholar
  258. USDA (2010) Database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2. http://www.orac-info-portal.de/download/ORAC_R2.pdf
  259. USDA (2017) Plants database. https://plants.usda.gov
  260. Usharani KS, Kumar CRA (2015) Induced polygenic variability using combination treatment of gamma rays and ethyl methane sulphonate in blackgram (Vigna mungo (L.) Hepper). Afr J Biotechnol 14(20):1702–1709CrossRefGoogle Scholar
  261. van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, CambridgeGoogle Scholar
  262. Van Zeist W, Bottema S (1971) Plant husbandry in early neolithic Nea Nikomedeia, Greece. Acta Bot Neerl 20:521–538Google Scholar
  263. Verma RP, Srivastava GK, Kumar G (1999) Comparative radiocytological studies in three varieties of Lens culinaris. J Cytol Genet 34(1):49–56Google Scholar
  264. Verma P, Sharma TR, Srivastava PS et al (2014) Exploring genetic variability within lentil (Lens culinaris Medik.) and a cross related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41:5607–5625.  https://doi.org/10.1007/s11033-014-3431-zCrossRefPubMedGoogle Scholar
  265. Vishnumittrre A (1974) The beginning of agriculture paleobotanical evidences in India. In: Hutchinson JB (ed) Evolutionary studies in world crop diversity and change in Indian Sub-continent. Cambridge University Press, Cambridge, pp 3–30Google Scholar
  266. Waghmare VN, Mehra RB (2000) Induced genetic variability for quantitative characters in grasspea (Lathyrus sativus L.). Indian J Genet 60(1):81–87Google Scholar
  267. Wani MR, Khan S (2006) Estimates of genetic variability in mutated populations and the scope of selection for yield attributes in (Vigna radiata (L.) Wilczek ). Egypt J Biol 8:1–6Google Scholar
  268. Wani MR, Kozgar MI, Tomlekova NB, Khan S (2014) Selection for polygenic variability in early mutant generations of mungbean (Vigna radiata (L.) Wilczek). In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Academic Publishers, Wageningen, pp 213–232CrossRefGoogle Scholar
  269. Wardman P (2009) The importance of radiation chemistry to radiation and free radical biology. (The 2008 Silvanus Thompson memorial lecture). Brit J Radiol 82(974):89–104CrossRefPubMedGoogle Scholar
  270. Wery J, Silim SN, Knights EJ et al (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73:73–83CrossRefGoogle Scholar
  271. Williams DJ, McHughen A (1986) Plant regeneration of the legume Lens culinaris Medik. (lentil) in vitro. Plant Cell Tissue Organ Cult 7:149–153CrossRefGoogle Scholar
  272. Xiong H, Guo H, Xie Y et al (2016) Enhancement of dwarf wheat germplasm with high-yield potential derived from induced mutagenesis. Plant Genet Resour 16:1–8Google Scholar
  273. Yankova V, Sovkova-Bobcheva S (2009) Studying of bean varieties (Phaseolus vulgaris L.) reaction to bean weevil infestation (Acanthoscelides obtectus Say). Ann RepBean Improv Coop 52:144–145Google Scholar
  274. Zamir D, Ladizinsky G (1984) Genetics of allozyme variants and linkage groups in lentil. Euphytica 33:329–336.  https://doi.org/10.1007/bf00021129CrossRefGoogle Scholar
  275. Zhang J, Guo D, Chang Y et al (2007) Non-random distribution of TDNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959CrossRefPubMedGoogle Scholar
  276. Zohary D (1972) The wild progenitor and the place of origin of the cultivated lentil Lens culinaris. Econ Bot 26:326–332CrossRefGoogle Scholar
  277. Zohary D (1976) Lentil. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 163–164Google Scholar
  278. Zohary D (1996) The mode of domestication of the founder crops of the Southwest Asian agriculture and pastoralism in Eurasia. University College London Press, London, pp 142–158Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafiul Amin Laskar
    • 1
    • 2
  • Samiullah Khan
    • 1
  • Chitta Ranjan Deb
    • 3
  • Nasya Tomlekova
    • 4
  • Mohammad Rafiq Wani
    • 5
  • Aamir Raina
    • 1
  • Ruhul Amin
    • 1
  1. 1.Mutation Breeding Laboratory, Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of BotanyNagaland UniversityLumamiIndia
  3. 3.Department of Botany, Nagaland UniversityLumamiIndia
  4. 4.Molecular Biology Laboratory, Department of BreedingMaritsa Vegetable Crops Research InstitutePlovdivBulgaria
  5. 5.Department of BotanyAbdul Ahad Azad Memorial Degree College, Bemina, Cluster University SrinagarSrinagarIndia

Personalised recommendations