Hyacinth Bean (Lablab purpureus L. Sweet): Genetics, Breeding and Genomics

  • Panichayil V. Vaijayanthi
  • Chandrakant
  • Sampangi Ramesh


Hyacinth bean (Lablab purpureus (L.) Sweet) is widely distributed in the Indian subcontinent, Africa and Southeast Asia. It is a multipurpose tropical legume valued as a vegetable, pulse, fodder and green manure crop. Despite a wide range of adaptability and diversity, it remains an underutilized crop. Broadening the genetic base and enhancing crop cultivar diversity is the key to sustainable production of hyacinth bean. Development of purelines through pedigree breeding is the preferred method of breeding in the hyacinth bean, as in other grain legume crops. Screening of germplasm resources, identification of trait-specific material and their use in breeding could be a long-term strategy to addressing various existing and anticipated production constraints. With the advent of molecular marker/omic technology, the pace and efficiency of hyacinth bean breeding has attained considerable momentum. DNA marker-assisted diversity analysis, chromosomal localization and unraveling of the mode of action of genes controlling traits of economic importance, tagging genomic regions controlling economic traits etc., will complement phenotype-based selection and breeding. Furthermore, deployment of various genomic tools will help in introgression of superior alleles into elite agronomic backgrounds and hence sustainable production of hyacinth bean.


Core set Diversity Field bean Germplasm Lablab Legume 


  1. Adanson M, Michel (1763) Famillies des plantes. Vincent, ParisGoogle Scholar
  2. Adebisi AA, Bosch CH (2004) Lablab purpureus (L.) Sweet. In: Grubben GJH, Denton OA (eds) Plant resources of tropical Africa (PROTA), No. 2, vegetables. PROTA Foundation, Wageningen, Netherlands, pp 343–348Google Scholar
  3. Alam MM, Newaz MA (2005) Combining ability for flower and pod characteristics of lablab bean under two sowing environments. Asian J Plant Sci 4(6):603–607CrossRefGoogle Scholar
  4. Aleksandar M, Vesna P (2016) Origin of some scientific and popular names designating hyacinth bean (Lablab purpureus). Legume Perspect 13:39–41Google Scholar
  5. Ali MA, Hasan MM, Mia MS et al (2011) Karyotype analysis in lignosus bean (Dipogon lignosus) and lablab bean (Lablab purpureus). J Bangladesh Agric Univ 9:27–36CrossRefGoogle Scholar
  6. Anon (1988) Annual report of Indian Institute of Horticultural Research, Bengaluru, IndiaGoogle Scholar
  7. Arifin MS, Baque MA, Islam SMAS et al (2005) Influence of cow dung on the yield performance of IPSA SEAM-3. Int J Sustain Agric Tech 1(6):69–75Google Scholar
  8. AVRDC (2009) AVRDC vegetable genetic resources information system (AVGRIS), Shanhua, Taiwan. Online 11.11.2009 from
  9. Ayyangar GNR, Nambiar KKK (1935) Studies in Dolichos lablab (Roxb.) (L.). The Indian field and garden bean. Proc Indian Acad Sci 1(12):857–867Google Scholar
  10. Ayyangar GNR, Nambiar KKK (1936a) Studies in Dolichos lablab (Roxb.) (L.) The Indian field and garden bean. II Proc Indian Acad Sci 2(1):74–79Google Scholar
  11. Ayyangar GNR, Nambiar KKK (1936b) Studies in Dolichos lablab (Roxb.) (L.) The Indian field and garden bean. III Proc Ind Acad Sci 4(5):411–433Google Scholar
  12. Benabdelmouna A, Darmency MA, Darmency H (2001) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103:668–677CrossRefGoogle Scholar
  13. Bernardo R (2010) Genome wide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627CrossRefGoogle Scholar
  14. Bernardo R, Yu J (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  15. BI (Bioversity International) (2008) Bioversity directory of germplasm collections, Rome, Italy. Online 13. From
  16. Biswas MDS, Zakaria M, Rahman MDM (2012) Assessments of genetic diversity in country bean (Lablab purpureus L.) using RAPD marker against photoinsensitivity. J Plant Dev 19:65–71Google Scholar
  17. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  18. Bruce C, Maass BL (2001) Lablab purpureus (L.) Sweet – diversity, potential and determination of a core-collection of this multi-purpose tropical legume. Genet Resour Crop Evol 48:261–272CrossRefGoogle Scholar
  19. Byregowda M, Gireesh G, Ramesh S et al (2015) Descriptors of dolichos bean (Lablab purpureus L.). J Food Legumes 28(3):203–214Google Scholar
  20. Cameron DG (1988) Tropical and subtropical pasture legumes. QLD Agric J 114(2):110–113Google Scholar
  21. Capoor SP, Verma PM (1950) A new virus disease of Dolichos lablab. Curr Sci 19:248–249PubMedGoogle Scholar
  22. Chandrakant (2018) Mapping quantitative trait loci, and prediction and validation of genomic estimated breeding values for seed yield and its component traits in dolichos bean (Lablab purpureus L. Sweet). Thesis, UAS Bengaluru, Karnataka, IndiaGoogle Scholar
  23. Chandrakant RS, Vaijayanthi PV et al (2015) Impact of bi-parental mating on quantitative traits inter-relationships and frequency of transgressive segregants in dolichos bean (Lablab purpureus L.). Electron J Plant Breed 6(3):723–728Google Scholar
  24. Chaudhury AR, Ali M, Quadri MA (1989) Aspects of pollination and floral biology of lablab bean (Lablab purpureus L. Sweet). Jpn Soc Hortic Sci J 58(3):665–671CrossRefGoogle Scholar
  25. Chen RY (2003) Chromosome atlas of major economic plants genome in China (II). Science Press, BeijingGoogle Scholar
  26. D’cruz R, Ponnaiya VTS (1968) Inheritance of pod and seed color and pod shape in garden bean. Ind J Genet 29(1):139–140Google Scholar
  27. Das I, Seth T, Durwas SV et al (2014) Gene action and combining ability for yield and yield component traits in dolichos bean (Dolichos lablab var. typicus). Sabrao J Breed Genet 46(2):293–304Google Scholar
  28. Desai DT, Patil AB, Patil SA et al (2013) Diallel analysis for pod yield and its components traits in vegetable Indian bean (Lablab purpureus L.). Afr J Agric Res 8(14):1229–1232CrossRefGoogle Scholar
  29. Engle LM, Altoveros NC (2000) Collection conservation and utilization of indigenous vegetables: proc. of a workshop, AVRDC, Shanhua, Tainan, Taiwan, 16–18 August 1999, p 142. Asian Vegetable Research and Development Center, TainanGoogle Scholar
  30. Ewansiha SS, Singh BB (2006) Relative drought tolerance of important herbaceous legumes and cereals in the moist and semi-arid regions of West Africa. J Food Agric Environ 4(2):188–190Google Scholar
  31. Frankel OH (1984) Genetic prospective of germplasm conservation. In: Arber W, Limensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–170Google Scholar
  32. Fuller DQ (2003) African crops in prehistoric South Asia: a critical review. In: Food, fuel, fields-progress in African archaebotany, vol 15. Heinrich-Barth-Institute, Koln, pp 239–271Google Scholar
  33. Girish G, Byregowda MB (2009) Inheritance of qualitative characters in dolichos bean Lablab purpureus L. Sweet. Environ Ecol 27(2):571–580Google Scholar
  34. Gnanesh BN, Redii Sekhar M, Raja Reddy K (2006) Genetic diversity analysis of field bean (Lablab purpureus L. Sweet) through RAPD markers. Poster presented at BARC Golden Jubilee & DAE-BRNS life sciences symposium on trends in research and technologies in agriculture and food sciences at Bhabha Atomic Research Centre (BARC), Mumbai, pp 18–20Google Scholar
  35. Goldblatt P (1981) Cytology and phylogeny of leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematic. Royal Botanical Gardens, Kew, pp 427–463Google Scholar
  36. GRIN (Genetic Resources Information Network) (2009) National plant germplasm system, Beltsville, MD, USA. Online 11.11.2009 from:
  37. Guwen Zhang G, Xu S, Mao W et al (2013) Development of EST-SSR markers to study genetic diversity in hyacinth bean (Lablab purpureus L.). Plant Omics 6(4):295–301Google Scholar
  38. Haque ME, Rahman M, Rahman MA et al (2003) Lablab bean based intercropping system in northwest region of Bangladesh. Pak J Biol Sci 6(10):948–951CrossRefGoogle Scholar
  39. Harland SC (1920) Inheritance in Dolichos lablab (L.). J Genet 10:219–226Google Scholar
  40. Hendricksen RE, Minson DJ (1985) Lablab purpureus – a review. Herb Abstr 55(8):215–228Google Scholar
  41. Hiremath SR, Shivashankar G, Shashidhar HE (1979) A unique strain of vegetable field bean [Lablab purpureus (L.) Sweet]. Curr Res 8:58Google Scholar
  42. Holland JF, Mullen CL (1995) Lablab purpureus (L) Sweet (lablab) cv koala. Aus J Exp Agric 35:559CrossRefGoogle Scholar
  43. Hoshikawa K (1981) Fuji mame (hyacinth bean). In: “Shokuyou Sakumotu” (Food Crops). Yoken-do, Tokyo, pp 540–542. (in Japanese)Google Scholar
  44. Humphry ME, Konduri V, Lambrides CJ et al (2002) Development of a mung bean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet 105:160–166CrossRefPubMedGoogle Scholar
  45. Islam MT (2008) Morpho-agronomic diversity of hyacianth bean [Lablab purpureus (L)] accessions from Bangladesh. Plant Genet Resour News Lett 156:73–78Google Scholar
  46. Islam N, Rahman MZ, Ali R et al (2014) Diversity analysis and establishment of core subset of hyacianth bean collection of Bangladesh. Pak J Agric Res 27(2):99–109Google Scholar
  47. Iwata A, Greenland CM, Jackson SA (2013) Cytogenetics of legumes in the phaseoloid clade. Plant Genome 6:1–8CrossRefGoogle Scholar
  48. Jacob KV (1981) Genetic architecture of yield and its components in field bean [Lablab purpureus (L.) Sweet]. PhD thesis, UAS, Bangalore, IndiaGoogle Scholar
  49. Jagadeesh Babu CS, Byregowda M, Girish G et al (2008) Screening of dolichos germplasm for pod borers and bruchids. Environ Ecol 26(4C):2288–2290Google Scholar
  50. Kay DE (1979) Hyacinth bean-food legume. Crop and product digest No. 3. Trop Prod Inst 16:184–196Google Scholar
  51. Keerthi CM, Ramesh S, Byregowda M et al (2014a) Genetics of growth habit and photoperiodic response to flowering time in dolichos bean (Lablab purpureus L.). J Genet 93(1):203–206CrossRefPubMedGoogle Scholar
  52. Keerthi CM, Ramesh S, Byregowda M et al (2014b) Performance stability of photoperiod sensitive vs. insensitive dolichos bean (Lablab purpureus L.) cultivars under delayed sowing conditions. Aus J Crop Sci 8(12):1658–1662Google Scholar
  53. Keerthi CM, Ramesh S, Byregowda M et al (2015) Epistasis-driven bias in the estimates of additive and dominance genetic variance in dolichos bean (Lablab purpureus L.). J Crop Improv 29:542–564CrossRefGoogle Scholar
  54. Keerthi CM, Ramesh S, Byregowda M et al (2016) Further evidence for the genetic basis of qualitative traits and their linkage relationships in dolichos bean (Lablab purpureus L.). J Genet 95(1):89–98CrossRefPubMedGoogle Scholar
  55. Khondker S, Newaz MA (1998) Combining ability studies in lablab bean (Lablab purpureus L.). Ann Bangladesh Agric 8(2):143–149Google Scholar
  56. Kim SE, Okubo H (1995) Control of growth habit in determinate lablab bean (Lablab purpureus) by temperature and photoperiod. Sci Hortic 61(3/4):147–155CrossRefGoogle Scholar
  57. Kim SE, Okubo H, Kodama Y (1992) Growth response of dwarf lablab (Lablab purpureus) to sowing date and photoperiod. J Jpn Soc Hort 61(3):589–594CrossRefGoogle Scholar
  58. Kim KW, Chung HK, Cho GT et al (2007) Power core: a programme applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162CrossRefPubMedGoogle Scholar
  59. Kimani EN, Wachira FN, Kinyua MG (2012) Molecular diversity of Kenyan lablab bean (Lablab purpureus (L.) Sweet) accessions using amplified fragment length polymorphism markers. Am J Plant Sci 3:313–321CrossRefGoogle Scholar
  60. Konduri V, Godwin ID, Liu CJ (2000) Genetic mapping of the Lablab purpureus genome suggests the presence of ‘cuckoo’ gene(s) in this species. Theor Appl Genet 100:866–871CrossRefGoogle Scholar
  61. Kukade SA, Tidke JA (2014) Reproductive biology of Dolichos lablab L. (Fabaceae). Ind J Plant Sci 3(2):22–25Google Scholar
  62. Laxmi K, Vaijayanthi PV, Keerthi CM et al (2016) Genotype-dependent photoperiod-induced sensitivity to flowering time in dolichos bean (Lablab purpureus L. Sweet var. lignosus). Bangladesh J Bot 45(3):471–476Google Scholar
  63. Liu CJ (1996) Genetic diversity and relationships among Lablab purpureus genotypes using RAPD markers. Euphytica 90:115–119CrossRefGoogle Scholar
  64. Liu CJ (1998) Lablab cv. endurance. Plant Var J 11:26–27Google Scholar
  65. Maass BL (2016) Origin, domestication and global dispersal of Lablab purpureus (L.) Sweet (Fabaceae): current understanding. Legume Persp 13:5–8Google Scholar
  66. Maass BL, Usongo MF (2007) Changes in seed characteristics during the domestication of the hyacinth bean (Lablab purpureus (L.) Sweet: papilionoideae). Crop Past Sci 58:9–19CrossRefGoogle Scholar
  67. Maass BL, Jamnadass RH, Hanson J et al (2005) Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm using amplified fragment length polymorphism (AFLP). Genet Resour Crop Evol 52:683–695CrossRefGoogle Scholar
  68. Maass BL, Knox MR, Venkatesh SC et al (2010) Lablab purpureus – a crop lost for Africa? Trop Plant Biol 3(3):123–135CrossRefPubMedPubMedCentralGoogle Scholar
  69. Magness JR, Markle GM, Compton CC (1971) Food and feed crops of the United States. Interregional Research Project IR-4, IR. Bul 828, New Jersey Agricultural Experiment Station, New Jersey, USAGoogle Scholar
  70. Magoon ML, Singh A, Mehra KL (1974) Improved field bean for dry land forage. Ind Farm 24(2):5–7Google Scholar
  71. Mahadevu P, Byregowda M (2005) Genetic improvement of dolichos bean (Lablab purpureus L.) through the use of exotic and indigenous germplasm. Ind J Plant Genet Resour 18:1–5Google Scholar
  72. Manjunath A, Chandrappa HM, Vishwanath SR et al (1973) Anthocyanin genetics of dolichos. Ind J Genet 33(3):345–346Google Scholar
  73. Maruthi MN, Manjunatha B, Rekha AR et al (2006) Dolichos yellow mosaic virus belongs to a distinct lineage of old world begomo virus; its biological and molecular properties. Ann Appl Biol 149:187–195CrossRefGoogle Scholar
  74. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  75. Mugwira LM, Haque I (1993) Screening forage and browse legumes germplasm to nutrient stress: II. Tolerance of Lablab purpureus L. to acidity and low phosphorus in two acid soils. J Plant Nutr 16:37–50CrossRefGoogle Scholar
  76. Muniyappa V, Maruthi MN, Babitha CR et al (2003) Characterization of pumpkin yellow vein mosaic virus from India. Ann Appl Biol 142:323–331CrossRefGoogle Scholar
  77. Muralidharan K (1980) Studies on genetic divergence and breeding behavior of few inter-varietal crosses in field bean. MSc thesis, University of Agricultural Sciences, Bangalore, IndiaGoogle Scholar
  78. Murphy AM, Colucci PE (1999) A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livest Res Rural Dev 11:96–113Google Scholar
  79. NAIS (National Institute of Agrobiological Sciences) (2009) Plant genetic resources databases, Tsukuba, Japan.–plant_search_en.php
  80. Nene YL (2006) Indian pulses through millennia. Asian Agric Hist 10(3):179–200Google Scholar
  81. Nworgu FC, Ajayi FT (2005) Biomass, dry matter yield, proximate and mineral composition of forage legumes grown as early dry season feeds. Livest Res Rural Dev. 17(11)
  82. Patil GD, Chavan VM (1961) Inheritance of some characters in field bean. Ind J Genet 21(2):142–145Google Scholar
  83. Patil P, Venkatesha SC, Ashok TH et al (2009) Genetic diversity in field bean as revealed with the AFLP markers. J Food Legum 22(1):18–22Google Scholar
  84. Peng YL, Wang XN, Mand L et al (2001) A new extremal early variety of Dolichos lablab L. “Xeangbiandou”. Acta Hort Sinica 28(5):480Google Scholar
  85. Prashanthi (2005) Inheritance of photo-insensitivity in lablab bean (Lablab purpureus (L.) Sweet). Legum Res 28:233–234Google Scholar
  86. Purseglove JW (1968) Tropical crops: dicotyledons, vols 1 & 2. Longman, LondonGoogle Scholar
  87. Qiu LL, Xing LL, Guo Y et al (2013) A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol Biol 83:41–50CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rahman J, Newaz MA, Islam MS (2002) Combining ability analysis on edible pod yield in F2 diallel population of lablab bean (Lablab purpureus L.). J Agric Educ Tech 5(1& 2):33–36Google Scholar
  89. Rai N, Kumar A, Singh PK et al (2010) Genetic relationship among hyacinth bean (Lablab purpureus) genotypes cultivars from different races based on quantitative traits and random amplified polymorphic DNA marker. Afr J Biotechnol 9(2):137–144Google Scholar
  90. Raihan MS, Newaz MA (2008) Combining ability for quantitative attributes in lablab bean (Lablab purpureus L.). Bangladesh J Genet Plant Breed 21(1):29–34CrossRefGoogle Scholar
  91. Rajendra Prasad BS (2015) Identification of sources and mechanisms of resistance to pod borers in dolichos bean (Lablab purpureus L. Sweet). PhD thesis, University of Agricultural Sciences, Bengaluru, Karnataka, IndiaGoogle Scholar
  92. Rajendra Prasad BS, Jagadeesh Babu CS, Byregowda M (2013) Screening dolichos bean (Lablab purpureus L.) genotypes for resistance to pulse beetle, Callosobruchus theobromae in laboratory. Curr Biotica 7(3):153–160Google Scholar
  93. Ramesh S, Byregowda M (2016) Dolichos bean (Lablab Purpureus L. Sweet, var. lignosus) genetics and breeding – present status and future prospects. Mysore J Agric Sci 50(3):481–500Google Scholar
  94. Rao MGK (1981) Genetic analysis of quantitative characters in field bean. PhD thesis, University of Agricultural Sciences, Bengaluru, Karnataka, IndiaGoogle Scholar
  95. Rao CH (1987) Genetic studies in garden bean. Ind J Genet 47:347–350Google Scholar
  96. Rashid MA, Tauhidur RM, Shahadad HM et al (2007) Indginous vegetables in Bangladesh. In: Chadha Ml, Kuo G, Gowda CLL (eds) Proceedings of the Ist international conference on indigenous vegetables and legumes – prospectus for fighting poverty, hunger and malnutrition. Acta Hort 752:397–400Google Scholar
  97. Raut VM, Patil VP (1985) Genetic studies in garden bean. Maharashtra Agric Univ 10(3):292–293Google Scholar
  98. Reddy M, Vishwanath SR, Satyan BA et al (1992) Genetic variability, heritability and genetic advance for yield and yield contributing characters in field bean (Lablab purpureus L. Sweet.). Mysore J Agric Sci 26(1):15–20Google Scholar
  99. Rivals P (1953) Le dolique d’Egypte ou lablab (Dolichos lablab L.) (deuxième partie et fin). Rev Int Bot Appl Agric Trop 33:518–537Google Scholar
  100. Rokhsana A, Ahamed F, Kabir MS et al (2006) Early bean marketing system in some selected areas of Bangladesh. Int J Sust Agric Tech 2(2):58–65Google Scholar
  101. Roxburgh W (1832) Flora indica. SeramporeGoogle Scholar
  102. Sakina K, Newaz MA (2003) Genotype × environment interaction in relation to diallele crosses for flower characters in bean (Lablab purpureus). Pak J Sci Ind Res 46(4):277–282Google Scholar
  103. Schaaffhausen RV (1963) Dolichos lablab or hyacinth bean: Its use for feed, food and soil improvement. Econ Bot 17:146–153CrossRefGoogle Scholar
  104. She CW, Xiang HJ (2015) Karyotype analysis of Lablab purpureus (L.) Sweet using fluorochrome banding and fluorescence in situ hybridisation with rDNA probes. Czech J Genet Plant Breed 51(3):110–116CrossRefGoogle Scholar
  105. Shivachi A, Kinyua MG, Kiplagat KO et al (2012) Cooking time and sensory evaluation of selected dolichos (Lablab purpureus) genotypes. Afr J Food Sci Tech 3(7):155–159Google Scholar
  106. Shivakumar MS, Ramesh S (2015) Transferability of cross legume species/genera SSR markers to dolichos bean (Lablab purpureus L.). Mysore J Agric Sci 49(2):263–265Google Scholar
  107. Shivakumar MS, Ramesh S, Mohan Rao A et al (2016) Cross legume species/genera transferability of SSR markers and their utility in assessing polymorphism among advanced breeding lines in dolichos bean (Lablab purpureus L.). Int J Curr Microbiol App Sci 6(8):656–668CrossRefGoogle Scholar
  108. Shivashankar G, Kulkarni RS (1989) Field bean [Dolichos lablab (L.)] var. lignosus prain. Indian Hortic 34:24–27Google Scholar
  109. Shivashankar G, Shambulingappa KG, Vishwanatha SR et al (1975) A new early strain of field bean. Curr Res 4:110–111Google Scholar
  110. Singh PK, Kumar A, Rai N et al (2012) Identification of host plant resistance to dolichos mosaic virus (DYMV) in dolichos bean (Lablab purpureus). J Plant Path Microbiol 3(5):1–3Google Scholar
  111. Smith GR, Rouquette FM, Premberton IJ (2008) Registration of ‘Rio Verde’ lablab. J Plant Regist 2(1):15CrossRefGoogle Scholar
  112. Sujithra M, Srinivasan S, Sudhakar P (2009) Molecular diversity in certain genotype in field bean (Lablab purpureus var. Lignosus Medikus) in relation to pod insect pest complex. Curr Biotica 3(2):256–263Google Scholar
  113. Sultana N, Ozakiy OH (2000) The use of RAPD markers in lablab bean (Lablab purpureus L. Sweet) phylogeny. Bull Inst Trop Agric Kyushu Univ 23:45–51Google Scholar
  114. Tefera TA (2006) Towards improved vegetable use and conservation of cowpea (Vigna ungiculata) and lablab (Lablab purpureus): agronomic and participatory evaluation in northeastern Tanzania and genetic diversity study. Cuvillier Verlag, GöttingenGoogle Scholar
  115. Tian Z, Wang S, Wang W, Liu L (2005) Study on the diversity of germplasm resources of Dolichos lablab L. Nat Sci J Hainan Univ 23(1):53–60Google Scholar
  116. Uday Kumar HR, Byre Gowda M, Ramesh S (2016) Identification of cross legume species/ genera SSR markers polymorphic to parents of recombinant inbred lines derived from two bi-parental crosses in dolichos bean (Lablab purpureus L. Sweet). Mysore J Agric Sci 50(2):372–375Google Scholar
  117. Upadhyaya HD (2015) Establishing core collections for enhanced use of germplasm in crop improvement. Ekin J Crop Breed Genet 1(1):1–12Google Scholar
  118. Vaijayanthi PV (2016) Identification of genetic determinants controlling fresh pod yield and its component traits in dolichos bean (Lablab Purpureus L. Sweet) through genome-wide association mapping. PhD thesis, UAS, Bangalore, Karnataka, IndiaGoogle Scholar
  119. Vaijayanthi PV, Ramesh S, Byregowda M et al (2015a) Genetic variability for morpho-metric traits in dolichos bean (Lablab purpureus L.). J Food Legum 28(1):5–10Google Scholar
  120. Vaijayanthi PV, Ramesh S, Byregowda M et al (2015b) Development and validation of a core set of dolichos bean germplasm. Int J Veg Sci 21:419–428CrossRefGoogle Scholar
  121. Vaijayanthi PV, Ramesh S, Byregowda M et al (2016a) Identification of traits-specific accessions from a core set of dolichos bean (Lablab purpureus L. Sweet) germplasm. J Crop Improv 30(2):244–257CrossRefGoogle Scholar
  122. Vaijayanthi PV, Ramesh S, Byregowda M et al (2016b) Identification of selected germplasm accessions for specific/wide adaptation coupled with high pod productivity in dolichos bean (Lablab purpureus L. Sweet). Mysore J Agric Sci 30(2):244–257Google Scholar
  123. Vaijayanthi PV, Ramesh S, Chandrashekhar A et al (2017) Yield stability analysis of dolichos bean genotypes using AMMI model and GGL biplot. Int J Agric Res 9(47):4800–4805Google Scholar
  124. Venkatesha SC, Gowda BM, Mahadevu P et al (2007) Genetic diversity within Lablab purpureus and application of genetic specific markers from a range of legume species. Plant Genet Resour 5(3):154–171CrossRefGoogle Scholar
  125. Venkatesha SC, Ramanjini Gowda PH, Ganapathy KN et al (2010) Genetic fingerprinting in dolichos bean using AFLP markers and morphological traits. Int J Biotech Biochem 6(3):395–404Google Scholar
  126. Verdcourt B (1970) Studies in the Leguminosae – Papilionoideae for the flora of tropical east Africa: III. Kew Bull 24:379–447CrossRefGoogle Scholar
  127. Verdcourt B (1980) The classification of Dolichos L. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, pp 45–48Google Scholar
  128. VIR (N.I.Vavilov All-Russian Scientific Research Institute of Plant Industry) (2009) Passport data of germplasm collections, St. Petersberg, Russia. Online 11.11.2009 from:
  129. Viswanath SR, Shivashankar G, Manjunath A (1971) Non-season bound Dolichos lablab L. with new plant type. Curr Sci 40(24):667–688Google Scholar
  130. Wang ML, Gillaspie AG, Newman ML et al (2004) Transfer of simple sequence repeat (SSR) markers across the legume family for germplasm characterization and evaluation. Plant Genet Resour 2(2):107–119CrossRefGoogle Scholar
  131. Wang M, Morris JB, Barkley NA et al (2007) Evaluation of genetic diversity of the USDA Lablab purpureus germplasm collection using simple sequence repeats markers. J Hortic Sci Biotechnol 82(4):571–578CrossRefGoogle Scholar
  132. Whitbread AM, Pengelly BC (2004) Tropical legumes for sustainable farming systems in southern Africa and Australia. ACIAR Proc. No. 115, Canberra, AustraliaGoogle Scholar
  133. Wilson GP, Murtagh GH (1962) Lablab – new forage crop for the north coast. NSW Agric Gaz 73:460–462Google Scholar
  134. Yao LM, Zhang LD, Hu YL et al (2012) Characterization of novel soybean derived simple sequence repeat markers and their transferability in hyacinth bean [Lablab purpureus (L.) Sweet]. Ind J Genet 72(1):46–53Google Scholar
  135. Yuan J, Yang R, Wu T (2009) Bayesian mapping QTL for fruit and growth phonological traits in Lablab purpureus (L.) Sweet. Afr J Biotechnol 8(2):167–175Google Scholar
  136. Yuan J, Wang B, Wu TL (2011) Quantitative trait loci (QTL) mapping for inflorescence length traits in Lablab purpureus (L.) Sweet. Afr J Biotechnol 10(18):3558–3566Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Panichayil V. Vaijayanthi
    • 1
  • Chandrakant
    • 1
  • Sampangi Ramesh
    • 1
  1. 1.Department of Genetics and Plant BreedingUAS, GKVKBangaloreIndia

Personalised recommendations