Advertisement

Recent Advances in Breeding, Marker Assisted Selection and Genomics of Black Gram (Vigna mungo (L.) Hepper)

  • Farrukh Azeem
  • Muhammad Junaid Bilal
  • Usman Ijaz
  • Muhammad Zubair
  • Ijaz Rasul
  • Muhammad Jawad Asghar
  • Ghulam Abbas
  • Rana Muhammad Atif
  • Amjad Hameed
Chapter

Abstract

Black gram (Vigna mungo (L.) Hepper) is an important leguminous pulse crop, which is grown for its protein-rich edible seeds. Due to a short life cycle and N-fixing ability, this crop is also grown as an intercrop and catch crop. Generally, exotic lines and cultivated germplasm have been used for genetic improvement of V. mungo. However, lack of suitable ideotypes for variable cropping systems, low harvest index, abiotic/biotic stresses and unavailability of quality seeds of improved varieties remain major constraints to achieve the true yield potential of this crop. This chapter presents a comprehensive worldwide overview of available biodiversity in V. mungo. Moreover, a detailed record is also presented for mutation breeding and recent advances in molecular marker-assisted breeding and genomic research for black gram with emphasis on genetic linkage maps, genes/QTLs mapping, genetic engineering and hybridization for improvement of agronomically-important traits. Availability of genomic resources which can be used to accelerate molecular breeding in V. mungo is also discussed.

Keywords

Black gram Molecular breeding Mutation breeding Next-generation sequencing 

References

  1. Abbas G, Hameed A, Rizwan M et al (2015) Genetic confirmation of mung bean (Vigna radiata) and mashbean (Vigna mungo) interspecific recombinants using molecular markers. Front Plant Sci 6:110–121CrossRefGoogle Scholar
  2. Abbas G, Ahsan M, Saleem M et al (2016) Inheritance study of different agronomic traits in mung mash interspecific recombinant genotypes. J Anim Plant Sci 26(1):149–155Google Scholar
  3. Abbas G, Asghar M, Rizwan M et al (2019) A process for genetic improvement in nutritional quality of mungbean by enriching its amino acid profile and protein content through recombination with mashbean. Registered as Intellectual Property Organization (IPO), Patent No. 142845Google Scholar
  4. Anittha I, Mullainathan L (2018) Mutagenic effect of EMS and DES on black gram (Vigna mungo L. Hepper) in M1 generation. J Phytol 12:6–08Google Scholar
  5. Arulbalachandran D, Mullainathan L, Velu S (2009a) Screening of mutants in black gram (Vigna mungo L. Hepper) with effect of DES and COH in M2 generation. J Phytol 1:2013–2018Google Scholar
  6. Arulbalachandran D, Mullainathan L, Velu S et al (2009b) Evaluation of genetic variation in mutants of black gram (Vigna mungo) as revealed by RAPD markers. Emir J Food Agric 13:42–50CrossRefGoogle Scholar
  7. Aversano R, Ercolano MR, Caruso I et al (2012) Molecular tools for exploring polyploid genomes in plants. Int J Mol Sci 13(8):10316–10335PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baba S (2015) Combined effects of cobalt-60 GAMMA radiations and sodium azide on growth and yield of black gram (Vigna mungo L. Hepper). J Phytology 14:115–126Google Scholar
  9. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baisakh B, Das TR, Panigrahi KK (2014) Genetic variability and correlation analysis for yield and yield contributing traits in advanced mutant lines of black gram (Vigna mungo (L). Hepper). Field Crop Res 27(3):202–205Google Scholar
  11. Basak J, Kundagrami S, Ghose TK, Pal A (2004) Development of yellow mosaic virus (YMV) resistance linked DNA marker in black gram (Vigna mungo) from populations segregating for YMV-reaction. Mol Breed 14(4):375–383CrossRefGoogle Scholar
  12. Bhalla-Sarin N, Bhomkar P, Debroy S et al (2004) Transformation of Vigna mungo (blackgram) for abiotic stress tolerance using marker free approach. In: New directions for a diverse planet: proceedings of the 4th international crop congress, Brisbane, Australia, October, p 454Google Scholar
  13. Bhanu AN, Kumar P, Singh MN et al (2017a) Assessment of genetic purity of inter-specific F1 hybrids involving mung bean (Vigna radiata) and (Vigna umbellate). J Exp Biol Agric Sci 5:636–643Google Scholar
  14. Bhanu AN, Singh MN, Srivastava K (2017b) Consequence of weather conditions for affecting crossability in three Vigna species. Electron J Plant Breed 8(2):572–576CrossRefGoogle Scholar
  15. Bhanu AN, Singh MN, Srivastava K (2018) Efficient hybridization procedure for better pod setting in inter-specific crosses involving Vigna species. Adv Plant Agri Res 8(2):112–116Google Scholar
  16. Bhargava SC, Smigocki AC (1994) Transformation of tropical grain legumes using particle bombardment. Curr Sci 66(6):439–442Google Scholar
  17. Bhavisha P, Purvi M, Pooja P, Vrinda S (2019) Phylogenetic implications and secondary structure analyses of black gram (Vigna mungo L Hepper) genotypes based on nrDNA ITS2 sequences. Comput Biol Chem 78:389–397CrossRefGoogle Scholar
  18. Bhomkar P, Upadhyay CP, Saxena M et al (2008) Salt stress alleviation in transgenic blackgram (Vigna mungo L. Hepper) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus promoter. Mol Breed 22(2):169–181CrossRefGoogle Scholar
  19. Binyamin R, Khan MA, Khan AI et al (2011) Molecular characterization of urdbean (Vigna mungo) germplasm related to resistance against urdbean leaf crinkle virus. Genet Mol Res 10(3):1681–1688PubMedCrossRefGoogle Scholar
  20. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants: by treatment with colchicine. J Hered 28:393–411CrossRefGoogle Scholar
  21. Chaitieng B, Kaga A, Tomooka N et al (2006) Development of a black gram (Vigna mungo L Hepper) linkage map and its comparison with an azuki bean (Vigna angularis Ohwi and Ohashi) linkage map. Theor Appl Genet 113(7):1261–1269PubMedCrossRefGoogle Scholar
  22. Chandel KPS, Lester RN, Starling RJ (1984) The wild ancestors of urid and mung beans (Vigna mungo) and (Vigna radiata). Bot J Linn Soc 89(1):85–96CrossRefGoogle Scholar
  23. Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28:240–252PubMedCrossRefGoogle Scholar
  24. Chinchest A, Nakeeraks P (1990) Mutation breeding of blackgram (Vigna mungo). Mungbean Meet 90:43–46Google Scholar
  25. Choi HK, Kim D, Uhm T (2004) A sequence based genetic map of (Medicago truncatula) and comparison of marker colinearity with (Medicago sativa). Genet 166(3):1463–1502CrossRefGoogle Scholar
  26. Chopra R, Saini R (2014) Transformation of blackgram (Vigna mungo) by Barley chitinase and ribosome inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl Biochem Biotech 174(8):2791–2800CrossRefGoogle Scholar
  27. Chowdhury RK, Chowdhury JB (1977) Intergeneric hybridization between Vigna mungo (L.) Hepper and Phaseolus calcaratus Roxb. Indian J Agri Sci 47:117–121Google Scholar
  28. Choudhary AK, Sultana R, Vales MI et al (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6(2):99–114CrossRefGoogle Scholar
  29. Crespel L, Meynet J (2003) Manipulation of ploidy level. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier Academic Press, Amsterdam, pp 5–11CrossRefGoogle Scholar
  30. Cruz VM, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop lesquerella and related species. PLoS One 8(5):e64062PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dar TUH, Rehman RU (2017) Future prospects in polyploidy research. In: Polyploidy: recent trends and future perspectives. Springer, New Delhi, pp 101–104CrossRefGoogle Scholar
  32. Das DK (2018) Expression of a bacterial chitinase (ChiB) gene enhances resistance against (Erysiphae polygoni) induced powdery mildew disease in the transgenic black gram (Vigna mungo L.). American J Plant Sci 9(08):1759CrossRefGoogle Scholar
  33. Dikshit HK, Jhang T, Singh NK et al (2007) Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biologia Plantar 51(3):451–457CrossRefGoogle Scholar
  34. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fernandez GCJ, Shanmugasundaram S (1988) The AVRDC mungbean improvement program: the past, present and future. In: McLean BT (ed) Mungbean: proceeding of the second international symposium. Asian vegetable Research and Development Center: Taiwan, pp 58–70Google Scholar
  36. Fuller DQ, Harvey EL (2006) The archaeobotany of Indian pulses: identification processing and evidence for cultivation. Environ Archaeol 11(2):219–246CrossRefGoogle Scholar
  37. Ganguli S, Dey A, Banik R et al (2016) Analyses of MYMIV-induced transcriptome in Vigna mungo as revealed by next generation sequencing. Genomics Data 7:226–228PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ganguly PR, Bhat K (2012) Study of the pattern of variation for microsatellite markers in Black gram (Vigna mungo) germplasm. DHR IJBLS 3(1):1–6Google Scholar
  39. Gautam NK, Kumar K, Prasad M (2016) Leaf crinkle disease in urdbean (Vigna mungo) an overview on causal agent vector and host. Protoplasma 253(3):729–746PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ghafoor A, Ahmad Z (2005) Diversity of agronomic traits and total seed protein in black gram (Vigna mungo). Acta Biol Crac Ser Bot 47(2):69–75Google Scholar
  41. Ghafoor A, Sharif A, Ahmad Z et al (2001) Genetic diversity in blackgram (Vigna mungo). Field Crops Res 69(2):183–190CrossRefGoogle Scholar
  42. Ghafoor A, Sultana T, Rizvi ZF (2012) Genetic diversity in black gram (Vigna mungo) for randomly amplified polymorphic DNA markers. Pak J Bot 44(2):473–478Google Scholar
  43. Gupta S, Gopalakrishna T (2009) Genetic diversity analysis in blackgram (Vigna mungo) using AFLP and transferable microsatellite markers from azuki bean (Vigna angularis). Genome 52(2):120–129PubMedCrossRefGoogle Scholar
  44. Gupta SK, Gopalakrishna T (2013) Advances in genome mapping in orphan grain legumes of genus Vigna. Indian J Genet Plant Breed 73:1–13.  https://doi.org/10.5958/j.0019-5200.73.1.001CrossRefGoogle Scholar
  45. Gupta SK, Souframanien J, Gopalakrishna T (2008) Construction of a genetic linkage map of black gram (Vigna mungo) based on molecular markers and comparative studies. Genome 51(8):628–637PubMedCrossRefGoogle Scholar
  46. Gurumurthy S, Sarkar B, Vanaja M et al (2019) Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiol Plant 41:42CrossRefGoogle Scholar
  47. He J, Zhao X, Laroche A et al (2014) Genotyping by sequencing an ultimate marker assisted selection tool to accelerate plant breeding. Front Plant Sci 15:472–484Google Scholar
  48. Iseki K, Takahashi Y, Muto C et al (2016) Diversity and evolution of salt tolerance in the genus Vigna. PLoS One 11(10):e0164711PubMedPubMedCentralCrossRefGoogle Scholar
  49. Iseki K, Takahashi Y, Muto C et al (2018) Diversity of drought tolerance in the genus Vigna. Front Plant Sci 9:110–121CrossRefGoogle Scholar
  50. Jansen PCM (2006) Vigna mungo (L.) Hepper. Record from Protabase. PROTA (Plant Resour Trop Africa/Ressources végétales l’Afrique Trop) Wageningen, NetherlandsGoogle Scholar
  51. Jasrotia RS, Iquebal MA, Yadav PK et al (2017) Development of transcriptome based web genomic resources of yellow mosaic disease in black gram (Vigna mungo). Physiol Mol Biol Plants 23(4):767–777PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jayamani P, Sathya M (2013) Genetic diversity in pod characters of black gram (Vigna mungo). Legum Res An Int J 36(3):220–223Google Scholar
  53. Jeevitha S, Karthikeyan R, Vignesh M et al (2018) Estimation of morphological and molecular genetic diversity in blackgram (Vigna mungo) under YMV hotspot regime. Hort Res 6:119–130Google Scholar
  54. Jiang G-L (2013) Molecular markers and marker assisted breeding in plants. Plant breed from lab to fields. InTech Open:45–83Google Scholar
  55. Kaewwongwal A, Kongjaimun A, Somta P et al (2015) Genetic diversity of the black gram (Vigna mungo) gene pool as revealed by SSR markers. Breed Sci 65(2):127–137PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kapildev G, Chinnathambi A, Sivanandhan G et al (2016) High efficient Agrobacterium mediated in planta transformation in black gram (Vigna mungo). Acta Phys Plant 38(8):205–215CrossRefGoogle Scholar
  57. Keneni G, Bekele E, Getu E et al (2011) Breeding food legumes for resistance to storage insect pests potential and limitations. Sustain 3(9):1399–1415CrossRefGoogle Scholar
  58. Kumar A, Dutt D, Gautam A (2016) Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram (Vigna mungo) residue as the substrate and its industrial applications. J Genet Eng Biotech 14(1):107–118CrossRefGoogle Scholar
  59. Kundu A, Pal A (2012) Identification and characterization of elite inbred lines with MYMIV resistance in black gram (Vigna mungo). Field Crops Res 135:116–125CrossRefGoogle Scholar
  60. Kundu A, Paul S, Dey A, Pal A (2017) High throughput sequencing reveals modulation of microRNAs in black gram (Vigna mungo) upon yellow mosaic India virus inoculation highlighting stress regulation. Plant Sci 257:96–105PubMedCrossRefGoogle Scholar
  61. Kuralarasan V, Vanniarajan C, Kanchana S et al (2017) Genetic divergence heritability and genetic advance in mutant lines of urdbean (Vigna mungo). Am J Res Commun 104:652–663Google Scholar
  62. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3(2):91–99PubMedCrossRefGoogle Scholar
  63. Maestri E, Malcevschi A, Massari A, Marmiroli N (2002) Genomic analysis of cultivated barley (Hordeum vulgare) using sequence tagged molecular markers estimates of divergence based on RFLP and PCR markers derived from stress responsive genes and simple sequence repeats. Mol Genet Genom 267(2):186–201CrossRefGoogle Scholar
  64. Maiti S, Basak J, Kundagrami S, Pal A (2011) Molecular marker-assisted genotyping of mungbean yellow mosaic India virus resistant germplasms of mungbean and urdbean. Mol Biotechnol 42:95–104CrossRefGoogle Scholar
  65. Maréchal R (1978) Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques traitées par l’analyse informatique. Boiss 28:1–273Google Scholar
  66. Muruganantham M, Amutha S, Selvaraj N et al (2007) Efficient Agrobacterium mediated transformation of Vigna mungo using immature cotyledonary node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant 43(6):550–557CrossRefGoogle Scholar
  67. Nadeem MA, Nawaz MA, Shahid MQ et al (2018) DNA molecular markers in plant breeding current status and recent advancements in genomic selection and genome editing. Biotechnol Equip 32(2):261–285CrossRefGoogle Scholar
  68. Naito K, Takahashi Y, Chaitieng B et al (2017) Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo). Breed Sci 67(2):151–158PubMedPubMedCentralCrossRefGoogle Scholar
  69. Noble TJ, Tao Y, Mace ES et al (2018) Characterization of linkage disequilibrium and population structure in a mung bean (Vigna radiata) diversity panel. Front Plant Sci 8:2102–2112PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pandiyan M, Senthil N, Ramamoorthi N et al (2010) Interspecific hybridization of Vigna radiata x 13 wild Vigna species for developing MYMV donar. Electro J Plant Breed 1(4):600–610Google Scholar
  71. Patial M, Thakur SR, Singh KP, Thakur A (2017) Frequency and spectrum of chlorophyll mutations and induced variability in black gram (Vigna mungo). Legum Res 40(1):39–46Google Scholar
  72. Patidar M, Sharma H, Haritwal S (2018) Genetic variability studies in blackgram (Vigna mungo L.) Hepper. Int J Chemical Studies 6(2):1501–1503Google Scholar
  73. Paul S, Kundu A (2014) Identification and expression profiling of black gram (Vigna mungo) microRNAs from leaf small RNA transcriptome by deep sequencing. J Integr Plant Biol 56(1):15–23PubMedCrossRefGoogle Scholar
  74. Pratap A, Prajapati U, Singh CM et al (2018) Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed 137:235–249CrossRefGoogle Scholar
  75. Raina A, Laskar R, Khursheed S et al (2016) Role of mutation breeding in crop improvement- past, present and future. Asian Res J Agric 2:1–13CrossRefGoogle Scholar
  76. Raina AA, Khursheed SH, Khan SA (2018) Optimisation of mutagen doses for gamma rays and sodium azide in black gram (Vigna mungo). Tren Biosci 11(13):2386–2389Google Scholar
  77. Ramchander L, Shunmugavalli N, Rajesh S (2017) Induced mutagenic frequency and spectrum of chlorophyll mutants in black gram (Vigna mungo). Farm Sci J 7(1):19–22Google Scholar
  78. Rao SR, Raina SN (2005) Cytological evaluation of colchitetraploidy in moth bean (Vigna aconitifolia) and its allied species. J Arid Legume 2:389–396Google Scholar
  79. Reeves TG, Thomas G, Ramsay G (2016) Save and grow in practice maize rice wheat a guide to sustainable cereal production. UN Food and Agriculture Organization, RomeGoogle Scholar
  80. Ribaut JM, Vicente MC, Delannay X (2010) Molecular breeding in developing countries challenges and perspectives. Curr Opin Plant Biol 13(2):213–218PubMedCrossRefGoogle Scholar
  81. Saini R, Jaiwal PK (2002) Age, position in mother seedling orientation and polarity of the epicotyl segments of black gram (Vigna mungo) determines its morphogenic response. Plant Sci 163(1):101–109CrossRefGoogle Scholar
  82. Saini R, Jaiwal PK (2005) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium-mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171PubMedCrossRefGoogle Scholar
  83. Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of black gram (Vigna mungo) via Agrobacterium tumefaciens. Plant Cell Rep 21(9):851–859PubMedGoogle Scholar
  84. Sakai H, Naito K, Takahashi Y et al (2015) The vigna genome server vig GS a genomic knowledge base of the genus Vigna based on high-quality annotated genome sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi and Ohashi. Plant Cell Physiol 57(1):e2PubMedCrossRefGoogle Scholar
  85. Saxena RK, Prathima C, Saxena KB et al (2010) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129(2):142–148CrossRefGoogle Scholar
  86. Sehrawat N, Yadav M, Bhat KV et al (2016) Introgression of mungbean yellow mosaic virus resistance in black gram (Vigna mungo) and purity testing of f1 hybrids using SSRs. Turk J Agric For 40(1):95–100CrossRefGoogle Scholar
  87. Sen NK, Jana MK (1964) Genetics of black gram (Phaseolus mungo L.). Genetica 34:46–57CrossRefGoogle Scholar
  88. Shafique S, Khan MR, Nisar MO, Rehman S (2011) Investigation of genetic diversity in blackgram (Vigna mungo). Pak J Bot 43(2):1223–1232Google Scholar
  89. Shanmungam AS, Rathnasamy R, Rangasamy SRS (1983) Crossability studies between green gram and blackgram. Curr Sci 52:1018–1020Google Scholar
  90. Singh DP (1990) Distant hybridization in genus Vigna – a review. Ind J Genet Plant Breed 50:268–276Google Scholar
  91. Singh MN, Singh RM (1991) Observation on the inter-specific hybrids between two species of Vigna. In: Abs Golden Jubilee Nat Symp New Delhi, pp 708–709Google Scholar
  92. Singh MN, Singh SK (2006) Study of induced amphidiploid derivatives of Vigna × Vigna mungo. Indian J Genet Plant Breed 66(3):245–246Google Scholar
  93. Singh MN, Singh RM, Singh UP (1996) Studies on hybrids and transgressive segregates in wide crosses of mungbean and urdbean. Indian J Genet 56:109–113Google Scholar
  94. Singh MN, Kumar R, Singh RM, Singh UP (1997) Inter specific hybridization between mungbean and urdbean. Indian J Pulse Res 10:237–239Google Scholar
  95. Singh BB, Solanki RK, Chaubey BK, Verma P (2011) Breeding for improvement of warm season food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CAB International, Oxfordshire, pp 63–80CrossRefGoogle Scholar
  96. Sivaprakash KR, Prashanth SR, Mohanty BP, Parida A (2004) Genetic diversity of black gram (Vigna mungo) landraces as evaluated by amplified fragment length polymorphism markers. Curr Sci 25(7):1411–1416Google Scholar
  97. Snape JW, Chapman V, Moss J, Blanch CE, Miller TE (1979) The crossability of wheat varieties with Hordeum bulbosum. Hered 42:291–298CrossRefGoogle Scholar
  98. Sohel M, Miah M, Mohiuddin SJ et al (2016) Correlation and path coefficient analysis of blackgram (Vigna mungo). J Biosci Agric Res 7(2):621–629CrossRefGoogle Scholar
  99. Somta P, Chen J, Yundaeng C et al (2019) Development of an SNP based high density linkage map and QTL analysis for bruchid (Callosobruchus maculatus F) resistance in black gram (Vigna mungo). Sci Rep 9(1):3930–3941PubMedPubMedCentralCrossRefGoogle Scholar
  100. Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in black gram (Vigna mungo) genotypes using RAPD and ISSR marker. Theor Appl Genet 109(8):1687–1693PubMedCrossRefGoogle Scholar
  101. Souframanien J, Gopalakrishna T (2006) ISSR and SCAR markers linked to the mungbean yellow mosaic virus resistance gene in blackgram (Vigna mungo). Plant Breed 125(6):619–622CrossRefGoogle Scholar
  102. Souframanien J, Reddy KS (2015) De novo assembly characterization of immature seed transcriptome and development of genic SSR markers in black gram (Vigna mungo). PLoS One 10(6):e0128748PubMedPubMedCentralCrossRefGoogle Scholar
  103. Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram (Vigna mungo). Euphytica 176(3):349–356CrossRefGoogle Scholar
  104. Subramanian D (1980) Inter specific hybridization in Vigna species. Ind J Genet 40:437–438Google Scholar
  105. Suman S, Rani B, Sharma VK et al (2018) SSR marker based profiling and diversity analysis of black gram (Vigna mungo) genotypes. Hort Biotech Res 7:144–156Google Scholar
  106. Sun X, Liu D, Zhang X et al (2013) SLAF seq an efficient method of large scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8(3):e58700PubMedPubMedCentralCrossRefGoogle Scholar
  107. Talukdar A, Shivakumar M (2012) Pollination without emasculation an efficient method of hybridization in soybean (Glycine max Merrill). Curr Sci 103(6):628–630Google Scholar
  108. Thilagavathi C, Mullainathan L (2011) Influence of physical and chemical mutagens on quantitative characters of black gram (Vigna mungo). Int Multidiscip Res J 1(1):12–23Google Scholar
  109. Tickoo J, Lal SK, Chandra N, Dikshit HK (2006) Mungbean breeding. In: Ali M, Kumar S (eds) Advances in mung bean and urd bean. Indian Inst Pulses Research, Kanpur, pp 110–148Google Scholar
  110. Tripathy SK, Mohanty P, Jena M et al (2016) Revealing contrasting genetic variation and study of genetic diversity in urdbean (Vigna mungo) using SDS PAGE of seed storage proteins. Res Biotech 7:111–120Google Scholar
  111. Usharani KS, Kumar CA (2015) Induced polygenic variability using combination treatment of gamma rays and ethyl methane sulphonate in black gram (Vigna mungo). Afr J Biotech 14(20):1702–1709CrossRefGoogle Scholar
  112. Usharani KS, Kumar CA (2016) Estimation of variability heritability and genetic advance in mutant populations of black gram (Vigna mungo). SABRAO J Breed Genet 48(3):258–265Google Scholar
  113. Varalaxmi Y, Prasanna A, Yadav SK et al (2013) Optimization of parameters for Agrobacterium mediated transformation of black gram (Vigna mungo) using cotyledon explants. Afr J Biotech 12(11):1209–1215Google Scholar
  114. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants features and applications. Trends Biotech 23(1):48–55CrossRefGoogle Scholar
  115. Varshney RK, Close TJ, Singh NK et al (2009) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12(2):202–210PubMedCrossRefGoogle Scholar
  116. Verma RPS, Singh DP (1986) The allelic relationship of genes giving resistance to mungbean yellow mosaic virus in blackgram. Theor Appl Genet 72(6):737–738PubMedCrossRefGoogle Scholar
  117. Verma N, Tajwar I, Chakraborty M, Manjaya JG (2018) Mutation study of gamma ray in M3 generation of urdbean (Vigna mungo). J Pharmacogn Phytochem 227:4136–4143Google Scholar
  118. Veni K, Vanniarajan C, Souframanien J (2017) Probit analysis and effect of electron beam and gamma rays in blackgram (Vigna mungo (L.) Hepper). Electron J Plant Breed 8(3):950–955CrossRefGoogle Scholar
  119. Vishalakshi B, Umakanth B, Shanbha AP et al (2017) RAPD assisted selection of black gram (Vigna mungo L. Hepper) towards the development of multiple disease resistant germplasm. 3 Biotech 7(1):1–12PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wahlang DR, Lamo JM, Goel S, Rao SR (2019a) Karyo-morphological consistency and heterochromatin distribution pattern in diploid and colchitetraploids of Vigna radiata and V. mungo. Meta Gene 21:100569CrossRefGoogle Scholar
  121. Wahlang DR, Suchiang W, Goel S, Rao SR (2019b) Analysis of genetic variation using ISSR and the development of SCAR marker in synthetic autotetraploids of Vigna mungo. Vegetos 32:48Google Scholar
  122. Win KT, Oo AZ (2017) Salt stress induced changes in protein profiles in two blackgram (Vigna mungo) varieties differing salinity tolerance. Adv Plants Agric Res 6(6):112–123Google Scholar
  123. Win KT, Ookawa T, Kanekatsu M, Hirasawa T (2016) Changes in hydraulic conductance cause the difference in growth response to short term salt stress between salt tolerant and sensitive black gram (Vigna mungo) varieties. J Plant Physiol 193:71–78PubMedCrossRefGoogle Scholar
  124. Xu Y (2010) Molecular plant breeding. CAB International, Wallingford/Cambridge, MACrossRefGoogle Scholar
  125. Ye YM, Tong J, Shi XP et al (2010) Morphological and cytological studies of diploid and colchicine-induced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Sci Hort 124:95–101CrossRefGoogle Scholar
  126. Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201PubMedCrossRefGoogle Scholar
  127. Zia ul Haq M, Ahmad S, Bukhari SA et al (2014) Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biol Res 47:23.  https://doi.org/10.1186/0717-6287-47-23CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farrukh Azeem
    • 1
  • Muhammad Junaid Bilal
    • 1
  • Usman Ijaz
    • 1
  • Muhammad Zubair
    • 1
  • Ijaz Rasul
    • 1
  • Muhammad Jawad Asghar
    • 2
  • Ghulam Abbas
    • 2
  • Rana Muhammad Atif
    • 3
  • Amjad Hameed
    • 2
  1. 1.Department of Bioinformatics and BiotechnologyGC UniversityFaisalabadPakistan
  2. 2.Plant Breeding and Genetics DivisionNuclear Institute of Agriculture and BiologyFaisalabadPakistan
  3. 3.Department of Plant Breeding and Genetics, U.S.-Pakistan Center for Advanced Studies in Agriculture & Food SecurityUniversity of AgricultureFaisalabadPakistan

Personalised recommendations