Advertisement

Future Potential of New High Tc Iron-Based Superconductors

  • Shiv J. SinghEmail author
  • Paolo Mele
Chapter

Abstract

The discovery of iron-based superconductors (FeSCs) was a surprise for the condensed matter community and became the second family of high temperature superconductors. With their attractions of very high upper critical fields and small electromagnetic anisotropy, a lot of research works have been done over past decade in accumulation of a vast amount of knowledge on materials, properties, mechanism, and applications. In this chapter, we have reviewed the current progress based on the technical applications of iron-based superconductors in terms of a future potential candidate. The basic characteristics of superconductors are summarized and define key concepts towards enhancing applied parameters such as transition temperature (Tc), upper critical field (Hc2), irreversibility field (H*), and critical current density (Jc).

Keywords

Superconductors Transition temperature Upper critical field Critical current density Superconducting wires and tapes Granular nature Multiband nature Flux pinning 

References

  1. 1.
    H. K. Onnes, Comm. Phys. Lab. Uni. Leiden 120b, 122b, 124c (1911).Google Scholar
  2. 2.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)Google Scholar
  3. 3.
    H. Hosono et al., Sci. Technol. Adv. Mater. 16, 033503 (2015)Google Scholar
  4. 4.
    D.C. Johnston, Adv. Phys. 59, 803 (2010)Google Scholar
  5. 5.
    H. Hosono et al., Mater. Today 21, 278 (2018)Google Scholar
  6. 6.
    J. Shimoyama, Supercond. Sci. Technol. 27, 044002 (2014)Google Scholar
  7. 7.
    C. Yao, Y. Ma, Supercond. Sci. Technol. 32, 023002 (2019)Google Scholar
  8. 8.
    S.J. Singh et al., IEEE Trans. Appl. Supercond. 23, 7300605 (2013)Google Scholar
  9. 9.
    A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363, 56 (1993)Google Scholar
  10. 10.
    J.G. Bednorz, K.A. Muller, Z. Phys. 64, 189 (1986)Google Scholar
  11. 11.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)Google Scholar
  12. 12.
    H.F. Braun, Phys. Lett. 75A, 386 (1980)Google Scholar
  13. 13.
    A.W. Graham, M. Kurmoo, P. Day, J. Chem. Soc. Chem. Commun. Issue 20, 2061–2062 (1995)Google Scholar
  14. 14.
    K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, K. Amaya, Nature 412, 316 (2001)Google Scholar
  15. 15.
    C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Science 235, 567 (1987)Google Scholar
  16. 16.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)Google Scholar
  17. 17.
    H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Nature 453, 376 (2008)Google Scholar
  18. 18.
    X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, D.F. Fang, Nature 453, 761 (2008)Google Scholar
  19. 19.
    Z.A. Ren, G.-C. Che, X.L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.L. Sun, F. Zhou, Z.X. Zhao, Europhys Phys Lett 83, 17002 (2008)Google Scholar
  20. 20.
    D. N. Basov and Andrey V. Chubukov, Nature Physics 7, 272–276 (2011)Google Scholar
  21. 21.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)Google Scholar
  22. 22.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)Google Scholar
  23. 23.
    M. Campbell, J.E. Evetts, Adv. Phys. 21, 199 (1972)Google Scholar
  24. 24.
    H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959)Google Scholar
  25. 25.
    V. Guritani et al., Phys. Rev. B 70, 184526 (2004)Google Scholar
  26. 26.
    A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001)Google Scholar
  27. 27.
    S.V. Shulga et al., Phys. Rev. Lett. 80, 1730–1733 (1998)Google Scholar
  28. 28.
    Y. Yokoya et al., Science 294, 2518–2520 (2001)Google Scholar
  29. 29.
    E. Boaknin et al., Phys. Rev. Lett. 90, 117003 (2003)Google Scholar
  30. 30.
    A.P. Petrović et al., Phys. Rev. Lett. 106, 017003 (2011)Google Scholar
  31. 31.
    F. Wang, D.-H. Lee, Science 332, 200 (2011)Google Scholar
  32. 32.
    D.J. Singh, M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008)Google Scholar
  33. 33.
    R.A. Jishi, H.M. Alyahyaei, New J. Phys. 11, 083030 (2009)Google Scholar
  34. 34.
    I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)Google Scholar
  35. 35.
    H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, N.L. Wang, Europhys. Lett. 83, 47001 (2008)Google Scholar
  36. 36.
    A. Gurevich, Rep. Prog. Phys. 74, 124501 (2011)Google Scholar
  37. 37.
    K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008)Google Scholar
  38. 38.
    I.I. Mazin, J. Schmalian, Phys. C 469, 614 (2009)Google Scholar
  39. 39.
    W.Q. Chen, K.Y. Yang, Y. Zhou, F.C. Zhang, Phys. Rev. Lett. 102, 047006 (2009)Google Scholar
  40. 40.
    A. V. Pogrebnyakov, X. X. Xi, J. M. Redwing, V. Vaithyanathan, D. G. Schlom, A. Soukiassian, S. B. Mi, C. L. Jia, J. E. Giencke, C. B. Eom, J. Chen, Y. F. Hu, Y. Cui, Qi Li, Appl. Phys. Lett. 85, 2017 (2004)Google Scholar
  41. 41.
    N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)Google Scholar
  42. 42.
    A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)Google Scholar
  43. 43.
    B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)Google Scholar
  44. 44.
    K. Maki, Phys. Rev. B 148, 362 (1962)Google Scholar
  45. 45.
    A. Fulde, R.A. Ferrel, Phys. Rev. 135, A550 (1964)Google Scholar
  46. 46.
    L.W. Grunberg, L. Gunther, Phys. Rev. Lett. 16, 996 (1966)Google Scholar
  47. 47.
    A. Gurevich, Phys. Rev. B 67, 184515 (2003)Google Scholar
  48. 48.
    F. Hunte et al., Nature 453, 903–905 (2008)Google Scholar
  49. 49.
    J. Jaroszynski et al., Phys. Rev. B 78, 064511 (2008)Google Scholar
  50. 50.
    H. Yuan, Q et al. Nature 457, 565–568 (2009)Google Scholar
  51. 51.
    K. Cho et al., Phys. Rev. B 82, 060502(R) (2011)Google Scholar
  52. 52.
    T. Klein et al., Phys. Rev. B 82, 184506 (2010)Google Scholar
  53. 53.
    P. Fulde, R.A. Ferrel, Phys. Rev. 135, A550–A563 (1964)Google Scholar
  54. 54.
    A.I. Larkin, N. Ovchinnikov Yu, Zh. Exp. Teor. Fiz 47, 1136–1146 (1964)Google Scholar
  55. 55.
    A.I. Larkin, N. Ovchinnikov Yu, Sov. Phys. JETP 20, 762–769. (Engl. transl.) (1965)Google Scholar
  56. 56.
    A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003)Google Scholar
  57. 57.
    M. Radovan et al., Nature 425, 51–55 (2003)Google Scholar
  58. 58.
    M. Kenzelmann et al., Science 321, 1652–1654 (2008)Google Scholar
  59. 59.
    S. Uji et al., Phys. Rev. Lett. 97, 15701 (2006)Google Scholar
  60. 60.
    S. Yonezawa et al., Phys. Soc. Jpn. 77, 054712 (2008)Google Scholar
  61. 61.
    L.N. Bulaevskii, A.A. Guseinov, Sov. J. Low. Temp. Phys. 2, 140 (1976)Google Scholar
  62. 62.
    A. Gurevich, Phys. Rev. B 82, 184504 (2010)Google Scholar
  63. 63.
    S.J. Singh et al., Phys. Rev. Mater. 2, 074802 (2018)Google Scholar
  64. 64.
    W.R. Meier et al., Phys. Rev. B 94, 064501 (2016)Google Scholar
  65. 65.
    A. Iyo et al., J. Am. Chem. Soc. 138, 3410 (2016)Google Scholar
  66. 66.
    T.P. Orlando et al., Phys. Rev. B 36, 2394 (1987)Google Scholar
  67. 67.
    P.P. Nguyen et al., Phys Rev B 48, 1148 (1993)Google Scholar
  68. 68.
    J.S. Moodera et al., Phys. Rev. B 37, 619 (1988)Google Scholar
  69. 69.
    T.T.M. Palstra et al., Phys. Rev. B 38, 5102 (1988)Google Scholar
  70. 70.
    M.J. Naughton et al., Phys. Rev. B 38, 9280 (1988)Google Scholar
  71. 71.
    M. Putti et al., Supercond. Sci. Technol. 23, 034003 (2010)Google Scholar
  72. 72.
    G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)Google Scholar
  73. 73.
    E.H. Brandt, Rep. Prog. Phys. 58, 1465–1594 (1995)Google Scholar
  74. 74.
    T. Katase, H. Hiramatsu, T. Kamiya, H. Hosono, Appl. Phys. Exp. 3, 063101 (2010)Google Scholar
  75. 75.
    A. Yamamoto et al., Supercond. Sci. Technol. 21, 095008 (2008)Google Scholar
  76. 76.
    F. Kametani et al., Appl. Phys. Lett. 95, 142502 (2009)Google Scholar
  77. 77.
    S.J. Singh et al., Supercond. Sci. Technol. 26, 065006 (2013)Google Scholar
  78. 78.
    S.J. Singh et al., Supercond. Sci. Technol. 28, 025006 (2015)Google Scholar
  79. 79.
    S. Lee et al., Appl. Phys. Lett. 95, 212505 (2009)Google Scholar
  80. 80.
    S. Heindl et al., Phys. Rev. Lett. 104, 077001 (2010)Google Scholar
  81. 81.
    E.F. Talantsev, W.P. Crump, Supercond. Sci. Technol. 31, 124001 (2018)Google Scholar
  82. 82.
    M.D. Lan et al., Phys. Rev. B 44, 233 (1991)Google Scholar
  83. 83.
    N.D. Zhigadlo et al., J. Phys. Condens. Matter 20, 342202 (2008)Google Scholar
  84. 84.
    P.J.W. Moll et al., Nat.Mater. 9, 628 (2010)Google Scholar
  85. 85.
    H. Yang et al., Appl. Phys. Lett. 93, 142506 (2008)Google Scholar
  86. 86.
    R. Prozorov et al., Phys. Rev. B 78, 224506 (2008)Google Scholar
  87. 87.
    T. Taen et al., Phys. Rev. B 80, 092502 (2009)Google Scholar
  88. 88.
    Y. Nakajima et al., Phys. Rev. B 80, 012510 (2009)Google Scholar
  89. 89.
    M. Eisterer et al., Supercond. Sci. Technol. 22, 095011 (2009)Google Scholar
  90. 90.
    X.X. Xi, Supercond. Sci. Technol. 22, 043001 (2009)Google Scholar
  91. 91.
    B. Dam et al., Nature 399, 439 (1999)Google Scholar
  92. 92.
    K. Iida et al., Arxiv 1812.10264 (2018).Google Scholar
  93. 93.
    I. Pallecchi et al., Phys. C 482, 68 (2012)Google Scholar
  94. 94.
    M.A. Tanatar et al., Phys. Rev. B 79, 094507 (2009)Google Scholar
  95. 95.
    C. Tarantini et al., Appl. Phys. Lett. 96, 142510 (2010)Google Scholar
  96. 96.
    Santhanam et al., Sci. News 131, 308 (1987)Google Scholar
  97. 97.
    N.D. Zhigadlo, S. Katrych, Z. Bukowski, S. Weyeneth, R. Puzniak, J. Karpinski, J. Phys. Condens. Mater. 20, 342202 (2008)Google Scholar
  98. 98.
    A. Yamamoto, L. Balicas, J. Jaroszynski, C. Tarantini, J. Jiang, A. Gurevich, D.C. Larbalestier, R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus, Appl. Phys. Lett. 94, 062511 (2009)Google Scholar
  99. 99.
    J.H. Durrell et al., Rep. Prog. Phys. 74, 124511 (2011)Google Scholar
  100. 100.
    K.-H. Muller, C. Andrikidis, H. K. Liu and S. X. Dou, Phys. Rev. B 50 (1994) 10218Google Scholar
  101. 101.
    L. Wang, Z. Gao, Y. Qi, X. Zhang, D. Wang, Y. Ma, Supercond. Sci. Technol. 22, 015019 (2009)Google Scholar
  102. 102.
    S. Graser et al., Nat. Phys. 6, 609 (2010)Google Scholar
  103. 103.
    D.C. Larbalestier et al., Nature 410, 186 (2001)Google Scholar
  104. 104.
    S.J. Singh et al., Phys. C 529, 8–20 (2016)Google Scholar
  105. 105.
    Y. Ma, Supercond. Sci. Technol. 25, 113001 (2012)Google Scholar
  106. 106.
    Y.C. Zhu et al., Supercond. Sci. Technol. 31, 06LT02 (2018)Google Scholar
  107. 107.
    Y.P. Qi, X.P. Zhang, Z.S. Gao, Z.Y. Zhang, L. Wang, D.L. Wang, Y.W. Ma, Phys. C 469, 717 (2009)Google Scholar
  108. 108.
    R.M. Scanlan et al., Proc. IEEE 92(10), 1639 (2004)Google Scholar
  109. 109.
    S.J. Singh et al., Supercond. Sci. Technol. 27, 085010 (2014)Google Scholar
  110. 110.
    C. Dong et al., Scr. Mater. 99, 33 (2015)Google Scholar
  111. 111.
    X.P. Zhang et al., IEEE Trans. Appl. Supercond. 27(4), 7300705 (2017)Google Scholar
  112. 112.
    T. Ozaki et al., Supercond. Sci. Technol. 24, 105002 (2011)Google Scholar
  113. 113.
    Q.P. Ding et al., Supercond. Sci. Technol. 25, 025003 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK
  2. 2.SIT Research LaboratoriesShibaura Inst. Tech. (Omiya campus)TokyoJapan

Personalised recommendations