Advertisement

Superconducting YBa2Cu3O7−δ Nanocomposite Films Using Preformed ZrO2 Nanocrystals via Chemical Solution Deposition

  • H. RijckaertEmail author
  • I. Van Driessche
Chapter

Abstract

Several articles are already published on how to synthesize the nanocrystals with desired properties, but a lack of acknowledge exist on how to use or incorporate these nanocrystals in the specific applications such as the formation of superconducting nanocomposite film. In the quest for the commercial breakthrough of coated conductors in power applications, we started to study and understand the missing link between the nanocrystal surface chemistry and the final nanocomposites performance. We successfully deposited the nanocomposite film via several chemical solution deposition techniques and optimized the growth process of epitaxial YBa2Cu3O7−δ and at the same time understood what the influence of the preformed nanocrystals and the growth of pinning-active nanocrystals in the YBa2Cu3O7−δ matrix.

Keywords

Chemical solution deposition Nucleation and growth Nanocomposite Thin film YBa2Cu3O7 Superconductor Nanoparticles SIMS Transmission electron microscope 

Notes

Acknowledgement

The authors want to thank S. Van Oosterwijck (Ghent University) for dip-coating experiments and several institutes (University of Turku, IFW Dresden and Karlsruhe Institute of Technology) for their contributions.

References

  1. 1.
    D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, High-T c superconducting materials for electric power applications. Nature 414(6861), 368–377 (2001)CrossRefGoogle Scholar
  2. 2.
    X. Obradors, T. Puig, Coated conductors for power applications: materials challenges. Supercond. Sci. Technol. 27(4), 044003 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, et al., Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Supercond. Sci. Technol. 25(12), 123001 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Hänisch, C. Cai, V. Stehr, R. Hühne, J. Lyubina, K. Nenkov, et al., Formation and pinning properties of growth-controlled nanoscale precipitates in YBa2Cu3O7−δ/transition metal quasi-multilayers. Supercond. Sci. Technol. 19(6), 534–540 (2006)CrossRefGoogle Scholar
  5. 5.
    J. MacManus-Driscoll, S. Foltyn, Q. Jia, H. Wang, A. Serquis, L. Civale, et al., Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x+BaZrO3. Nat. Mater. 3(7), 439–443 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Malmivirta, H. Rijckaert, V. Paasonen, H. Huhtinen, T. Hynninen, R. Jha, et al., Enhanced flux pinning in YBCO multilayer films with BCO nanodots and segmented BZO nanorods. Sci. Rep. 7(1), 14682 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Feighan, A. Kursumovic, J. MacManus-Driscoll, Materials design for artificial pinning centres in superconductor PLD coated conductors. Supercond. Sci. Technol. 30(12), 123001 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Haugan, P. Barnes, R. Wheeler, F. Meisenkothen, M. Sumption, Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 430(7002), 867–870 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Opherden, M. Sieger, P. Pahlke, R. Hühne, L. Schultz, A. Meledin, et al., Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates. Sci. Rep. 6, 21188 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Pollefeyt, S. Clerick, P. Vermeir, J. Feys, R. Hühne, P. Lommens, et al., Ink-jet printing of SrTiO3 buffer layers from aqueous solutions. Supercond. Sci. Technol. 27(9), 095007 (2014)CrossRefGoogle Scholar
  11. 11.
    K. De Keukeleere, G. Pollefeyt, J. Feys, J. De Roo, H. Rijckaert, P. Lommens, et al., Chemical solution deposition of functional ceramic coatings using ink-jet printing. Pure Appl. Chem. 87(3), 231–238 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Rijckaert, G. Pollefeyt, M. Sieger, J. Hänisch, J. Bennewitz, K. De Keukeleere, et al., Optimizing nanocomposites through nanocrystal surface chemistry: superconducting YBa2Cu3O7 thin films via low-fluorine metal organic deposition and preformed metal oxide nanocrystals. Chem. Mater. 29(14), 6104–6113 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Bäcker, Energy and superconductors–applications of high-temperature-superconductors. Z. Kristallogr. 226(4), 343–351 (2011)CrossRefGoogle Scholar
  14. 14.
    K.H. Sandhage, G.N. Riley, W.L. Carter, Critical issues in the OPIT processing of high-J c BSCCO superconductors. JOM 43(3), 21–25 (1991)CrossRefGoogle Scholar
  15. 15.
    J. Maguire, J. Yuan, W. Romanosky, F. Schmidt, R. Soika, S. Bratt, et al., Progress and status of a 2G HTS power cable to be installed in the Long Island Power Authority (LIPA) grid. IEEE Trans. Appl. Supercond. 21(3), 961–966 (2011)CrossRefGoogle Scholar
  16. 16.
    M.P. Paranthaman, T. Izumi, High-performance YBCO-coated superconductor wires. Mater. Res. Soc. Bull. 29(08), 533–541 (2004)CrossRefGoogle Scholar
  17. 17.
    A. Malozemoff, S. Annavarapu, L. Fritzemeier, Q. Li, V. Prunier, M. Rupich, et al., Low-cost YBCO coated conductor technology. Supercond. Sci. Technol. 13(5), 473 (2000)CrossRefGoogle Scholar
  18. 18.
    A. Goyal, D. Norton, J. Budai, M. Paranthaman, E. Specht, D. Kroeger, et al., High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett. 69(12), 1795–1797 (1996)CrossRefGoogle Scholar
  19. 19.
    M. Bäcker, M. Falter, O. Brunkahl, B. Holzapfel, Superconducting films, in Chemical Solution Deposition of Functional Oxide Thin Films, ed. by T. Schneller, R. Waser, M. Kosec, D. Payne, (Springer, Wien, 2013), pp. 673–705CrossRefGoogle Scholar
  20. 20.
    T. Araki, I. Hirabayashi, Review of a chemical approach to YBa2Cu3O7−x-coated superconductors—metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 16(11), R71–R94 (2003)CrossRefGoogle Scholar
  21. 21.
    A. Gupta, R. Jagannathan, E.I. Cooper, E. Giess, J. Landman, B. Hussey, Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52(24), 2077–2079 (1988)CrossRefGoogle Scholar
  22. 22.
    P. Vermeir, I. Cardinael, J. Schaubroeck, K. Verbeken, M. Bäcker, P. Lommens, et al., Elucidation of the mechanism in fluorine-free prepared YBa2Cu3O7−δ coatings. Inorg. Chem. 49(10), 4471–4477 (2010)CrossRefGoogle Scholar
  23. 23.
    P.C. McIntyre, M.J. Cima, M.F. Ng, Metalorganic deposition of high-J c Ba2YCu3O7−x thin films from trifluoroacetate precursors onto (100) SrTiO3. J. Appl. Phys. 68(8), 4183–4187 (1990)CrossRefGoogle Scholar
  24. 24.
    J. Smith, M. Cima, N. Sonnenberg, High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9(2), 1531–1534 (1999)CrossRefGoogle Scholar
  25. 25.
    T. Araki, H. Kurosaki, Y. Yamada, I. Hirabayashi, J. Shibata, T. Hirayama, Coating processes for YBa2Cu3O7-x superconductor by metalorganic deposition method using trifluoroacetates. Supercond. Sci. Technol. 14(9), 783 (2001)CrossRefGoogle Scholar
  26. 26.
    N. Roma, S. Morlens, S. Ricart, K. Zalamova, J.M. Moreto, A. Pomar, et al., Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films. Supercond. Sci. Technol. 19(6), 521–527 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Llordes, K. Zalamova, S. Ricart, A. Palau, A. Pomar, T. Puig, et al., Evolution of metal-trifluoroacetate precursors in the thermal decomposition toward high-performance YBa2Cu3O7 superconducting films. Chem. Mater. 22(5), 1686–1694 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Zalamova, N. Romà, A. Pomar, S. Morlens, T. Puig, J. Gázquez, et al., Smooth stress relief of trifluoroacetate metal-organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 18(25), 5897–5906 (2006)CrossRefGoogle Scholar
  29. 29.
    H. Rijckaert, J. De Roo, K. Roeleveld, G. Pollefeyt, J. Bennewitz, M. Bäcker, et al., Microwave-assisted YBa2Cu3O7 precursors: a fast and reliable method towards chemical precursors for superconducting films. J. Am. Ceram. Soc. 100(6), 2407–2418 (2017)CrossRefGoogle Scholar
  30. 30.
    J.-S. Schanche, Microwave synthesis solutions from personal chemistry. Mol. Divers. 7(2), 291–298 (2003)CrossRefGoogle Scholar
  31. 31.
    J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 127(45), 15791–15800 (2005)CrossRefGoogle Scholar
  32. 32.
    J. De Roo, K. De Keukeleere, J. Feys, P. Lommens, Z. Hens, Van Driessche I. Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles. J. Nanopart. Res. 15(7), 1778 (2013)CrossRefGoogle Scholar
  33. 33.
    K. De Keukeleere, J. De Roo, P. Lommens, J.C. Martins, P. Van Der Voort, I. Van Driessche, Fast and tunable synthesis of ZrO2 nanocrystals: mechanistic insights into precursor dependence. Inorg. Chem. 54(7), 3469–3476 (2015)CrossRefGoogle Scholar
  34. 34.
    J. Watté, P. Lommens, G. Pollefeyt, M. Meire, K. De Buysser, I. Van Driessche, Highly crystalline nanoparticle suspensions for low-temperature processing of TiO2 thin films. ACS Appl. Mater. Interfaces 8(20), 13027–13036 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Cayado, B. Mundet, H. Eloussifi, F. Valles, M.C. Bau, S. Ricart, et al., Epitaxial superconducting GdBa2Cu3O7-d/Gd2O3 nanocomposite thin films from advanced Low-Fluorine solutions. Supercond. Sci. Technol. 30, 125010 (2017).  https://doi.org/10.1088/1361-6668/aa8ffe CrossRefGoogle Scholar
  36. 36.
    A. Nikolopoulos, B.-L. Jang, J. Spivey, Acetone condensation and selective hydrogenation to MIBK on Pd and Pt hydrotalcite-derived Mg Al mixed oxide catalysts. Appl. Catal. A Gen. 296(1), 128–136 (2005)CrossRefGoogle Scholar
  37. 37.
    X. Palmer, C. Pop, H. Eloussifi, B. Villarejo, P. Roura, J. Farjas, et al., Solution design for low-fluorine trifluoroacetate route to YBa2Cu3O7 films. Supercond. Sci. Technol. 29(2), 024002 (2016)CrossRefGoogle Scholar
  38. 38.
    L. Jin, C. Li, J. Feng, Z. Yu, Y. Wang, L. Lei, et al., Optimization of fluorine content in TFA-MOD precursor solutions for YBCO film growth. Supercond. Sci. Technol. 29(1), 015001 (2015)CrossRefGoogle Scholar
  39. 39.
    G. Pollefeyt, S. Clerick, P. Vermeir, P. Lommens, K. De Buysser, I. Van Driessche, Influence of aqueous precursor chemistry on the growth process of epitaxial SrTiO3 buffer layers. Inorg. Chem. 53(10), 4913–4921 (2014)CrossRefGoogle Scholar
  40. 40.
    X. Obradors, T. Puig, A. Pomar, F. Sandiumenge, N. Mestres, M. Coll, et al., Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond. Sci. Technol. 19(3), S13–S26 (2006)CrossRefGoogle Scholar
  41. 41.
    S. Razza, S. Castro-Hermosa, A. Di Carlo, T.M. Brown, Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 4(9), 091508 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Falter, K. Demmler, W. Hassler, B. Schlobach, B. Holzapfel, L. Schultz, Chemical solution deposition (CSD) of YBa2Cu3O7-x films and oxide buffer layers by dip coating. IEEE Trans. Appl. Supercond. 13(2), 2751–2754 (2003)CrossRefGoogle Scholar
  43. 43.
    P. Paturi, H. Huhtinen, K. Laajalehto, R. Laiho, Reason for high critical current in thin YBCO films prepared by laser ablation from nanostructured target. Supercond. Sci. Technol. 13(5), 622 (2000)CrossRefGoogle Scholar
  44. 44.
    H. Huhtinen, K. Schlesier, P. Paturi, Growth and c-axis flux pinning of nanostructured YBCO/BZO multilayers. Supercond. Sci. Technol. 22(7), 075019 (2009)CrossRefGoogle Scholar
  45. 45.
    G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)CrossRefGoogle Scholar
  46. 46.
    S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, et al., Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6(9), 631–642 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Llordés, A. Palau, J. Gázquez, M. Coll, R. Vlad, A. Pomar, et al., Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mater. 11(4), 329–336 (2012)CrossRefGoogle Scholar
  48. 48.
    M. Kaname, M. Paolo, Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23(1), 014001 (2010)CrossRefGoogle Scholar
  49. 49.
    T. Puig, J. Gutiérrez, A. Pomar, A. Llordés, J. Gazquez, S. Ricart, et al., Vortex pinning in chemical solution nanostructured YBCO films. Supercond. Sci. Technol. 21(3), 034008 (2008)CrossRefGoogle Scholar
  50. 50.
    J. Gutierrez, A. Llordes, J. Gazquez, M. Gibert, N. Roma, S. Ricart, et al., Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat. Mater. 6(5), 367–373 (2007)CrossRefGoogle Scholar
  51. 51.
    L. Lei, G. Zhao, H. Xu, N. Wu, Y. Chen, Influences of Y2O3 nanoparticle additions on the microstructure and superconductivity of YBCO films derived from low-fluorine solution. Mater. Chem. Phys. 127(1), 91–94 (2011)CrossRefGoogle Scholar
  52. 52.
    S. Ye, H. Suo, Z. Wu, M. Liu, Y. Xu, L. Ma, et al., Preparation of solution-based YBCO films with BaSnO3 particles. Phys. C 471(7), 265–269 (2011)CrossRefGoogle Scholar
  53. 53.
    M. Erbe, J. Hänisch, R. Hühne, T. Freudenberg, A. Kirchner, L. Molina-Luna, et al., BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films. Supercond. Sci. Technol. 28(11), 114002 (2015)CrossRefGoogle Scholar
  54. 54.
    F. Ding, H. Gu, T. Zhang, H. Wang, F. Qu, Q. Qiu, et al., Strong enhancement flux pinning in MOD-YBa2Cu3O7−x films with self-assembled BaTiO3 nanocolumns. Appl. Surf. Sci. 314, 622–627 (2014)CrossRefGoogle Scholar
  55. 55.
    M. Coll, R. Guzman, P. Garcés, J. Gazquez, V. Rouco, A. Palau, et al., Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7 nanocomposites obtained by chemical solution deposition. Supercond. Sci. Technol. 27(4), 044008 (2014)CrossRefGoogle Scholar
  56. 56.
    F. Martinez-Julian, S. Ricart, A. Pomar, M. Coll, P. Abellán, F. Sandiumenge, et al., Chemical solution approaches to YBa2Cu3O7-Au nanocomposite superconducting thin films. J. Nanosci. Nanotechnol. 11(4), 3245–3255 (2011)CrossRefGoogle Scholar
  57. 57.
    P. Cayado, K. De Keukeleere, A. Garzón, L. Perez-Mirabet, A. Meledin, J. De Roo, et al., Epitaxial YBa2Cu3O7−x nanocomposite thin films from colloidal solutions. Supercond. Sci. Technol. 28(12), 124007 (2015)CrossRefGoogle Scholar
  58. 58.
    K. De Keukeleere, P. Cayado, A. Meledin, F. Vallès, J. De Roo, H. Rijckaert, et al., Superconducting YBa2Cu3O7–δ nanocomposites using preformed ZrO2 nanocrystals: growth mechanisms and vortex pinning properties. Adv. Electron. Mater. 2(10), 1600161 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Joo, T. Yu, Y.W. Kim, H.M. Park, F. Wu, J.Z. Zhang, et al., Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 125(21), 6553–6557 (2003)CrossRefGoogle Scholar
  60. 60.
    K. De Keukeleere, S. Coucke, E. De Canck, P. Van Der Voort, F. Delpech, Y. Coppel, et al., Stabilization of colloidal Ti, Zr, and Hf oxide nanocrystals by protonated tri-n-octylphosphine oxide (TOPO) and its decomposition products. Chem. Mater. 29(23), 10233–10242 (2017)CrossRefGoogle Scholar
  61. 61.
    J. De Roo, S. Coucke, H. Rijckaert, K. De Keukeleere, D. Sinnaeve, Z. Hens, et al., Amino acid-based stabilization of oxide nanocrystals in polar media: from insight in ligand exchange to solution 1H NMR probing of short-chained adsorbates. Langmuir 32(8), 1962–1970 (2016)CrossRefGoogle Scholar
  62. 62.
    H. Rijckaert, J. De Roo, M. Van Zele, S. Banerjee, H. Huhtinen, P. Paturi, et al., Pair distribution function analysis of ZrO2 nanocrystals and insights in the formation of ZrO2-YBa2Cu3O7 nanocomposites. Materials 11(7), 1066 (2018)CrossRefGoogle Scholar
  63. 63.
    H. Chen, K. Zalamova, A. Pomar, X. Granados, T. Puig, X. Obradors, Growth rate control and solid–gas modeling of TFA-YBa2Cu3O7 thin film processing. Supercond. Sci. Technol. 23(3), 034005 (2010)CrossRefGoogle Scholar
  64. 64.
    E. Gyorgy, R. Van Dover, K. Jackson, L. Schneemeyer, J. Waszczak, Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55(3), 283–285 (1989)CrossRefGoogle Scholar
  65. 65.
    A.V. Pan, I. Golovchanskiy, S. Fedoseev, Critical current density: measurements vs. reality. EPL 103(1), 17006 (2013)CrossRefGoogle Scholar
  66. 66.
    P. Paturi, M. Malmivirta, H. Palonen, H. Huhtinen, Dopant diameter dependence of J(c)(B) in doped YBCO films. IEEE Trans. Appl. Supercond. 26(3), 8000705 (2016)Google Scholar
  67. 67.
    K. Zalamova, A. Pomar, A. Palau, T. Puig, X. Obradors, Intermediate phase evolution in YBCO thin films grown by the TFA process. Supercond. Sci. Technol. 23(1), 014012 (2009)CrossRefGoogle Scholar
  68. 68.
    L.H. Jin, Y.F. Lu, J.Q. Feng, S.N. Zhang, Z.M. Yu, Y. Wang, et al., Evolution of low fluorine solution in decomposition and crystallization for YBa2Cu3Oy film growth. J. Alloys Compd. 568, 36–41 (2013)CrossRefGoogle Scholar
  69. 69.
    D. Wesolowski, M. Yoshizumi, M. Cima, Understanding the MOD process between decomposition and YBCO formation. IEEE Trans. Appl. Supercond. 17(2), 3351–3354 (2007)CrossRefGoogle Scholar
  70. 70.
    H. Rijckaert, J. Hänisch, G. Pollefeyt, M. Bäcker, I. Van Driessche, J. Am. Ceram. Soc. 102(7), 3870–3878 (2019)Google Scholar
  71. 71.
    A. Llordes, A. Palau, J. Gazquez, M. Coll, R. Vlad, A. Pomar, et al., Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mater. 11(4), 329–336 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryGhent UniversityGhentBelgium

Personalised recommendations