Ecohydrological Controls on the Deposition of Non-rainfall Water, N, and P to Dryland Ecosystems

  • Christiane Runyan
  • Lixin Wang
  • Deborah Lawrence
  • Paolo D’Odorico


It is widely recognized that plant canopies can alter their local environment in ways that enhance their own productivity. “Islands of fertility” are associated with plant canopies in a variety of ecosystems (Kellman, J Ecol 67:565–577, 1979; Schlesinger and Pilmanis, Biogeochemistry 42:169–187, 1998; Matson, Oecologia 85:241–246, 1990; Schlesinger et al., Science 247:1043–1048, 1990; McGowan and Ledgard, J R Soc N Z 35:269–277, 2005) and are due in part to ecohydrological feedbacks (Charley and West, J Ecol 63:945–963, 1975; Wilson and Agnew, Adv Ecol Res 23:263–336, 1992; Rietkerk and van de Koppel, Oikos 79:69–76, 1997; Schlesinger et al., Science 247:1043–1048, 1990; D’Odorico et al., J Geophys Res 112:G04010, 2007; DeLonge, Hydrologically influenced feedbacks between phosphorus and vegetation in dry tropical forests, University of Virginia, Charlottesville, VA, 2007; Ridolfi et al., Water Resour Res 44:W01435, 2008; Das et al., J Geophys Res 116, 2011; Chap.  17). Plant canopies may enable a positive feedback between vegetation and either fog water or nutrient deposition by acting as a large trapping surface to scavenge moisture, dust, and aerosols from the atmosphere (Rea et al., Environ Sci Technol 34:2418–2425, 2000). In dryland ecosystems, such a phenomenon has been documented whereby moisture was observed on plants and artificial surfaces, yet no visible moistening of the bare soil surface was evident (Kidron, Atmos Res 55:257–270, 2000). Plants have developed many distinct strategies to allow the use of fog water through the canopy (Wang et al., Wiley Interdiscip Rev Water 30:2077–2086, 2017). For example, some bromeliads in Mexico develop specialized trichomes (Andrade, J Trop Ecol 19:479–488, 2003), and several Crassula species located in the Namib Desert take water up through hydathodes and into their leaves (Martin and Willert, Plant Biol 2:229–242, 2000). Besides providing water sources, fog water can also aid in modifying the vegetation’s energy balance (Sudmeyer et al., J Hydrol 154:255–269, 1994), decrease transpiration (Barradas and Glez-MedellÚn, Int J Biometeorol 43:1–7, 1999), increase stomata conductance, and increase CO2 uptake (Martin and Willert, Plant Biol 2:229–242, 2000). Thus, changes in land cover have the potential to significantly alter water and nutrient dynamics in some ecosystems.


  1. Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ 65(4):572–590CrossRefGoogle Scholar
  2. Agam N (2014) Comment on “Microlysimeter station for long term non-rainfall water input and evaporation studies” by Uclés et al. Agric For Meteorol 194:255–256CrossRefGoogle Scholar
  3. Andrade JL (2003) Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488CrossRefGoogle Scholar
  4. Barbosa O, Marquet PA, Bacigalupe LD, Christie DA, Del-Val E, Gutierrez AG et al (2010) Interactions among patch area, forest structure and water fluxes in a fog-inundated forest ecosystem in semi-arid Chile. Funct Ecol 24(4):909–917CrossRefGoogle Scholar
  5. Barradas VL, Glez-Medellín MG (1999) Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. Int J Biometeorol 43:1–7CrossRefGoogle Scholar
  6. Beiderwieden E, Schmidt A, Hsia YJ, Chang SC, Wrzesinsky T, Klemm O (2007) Nutrient input through occult and wet deposition into a subtropical montane cloud forest. Water Air Soil Pollut 186(1–4):273–288CrossRefGoogle Scholar
  7. Beswick KM, Hargreaves KJ, Gallagher MW, Choularton TW, Fowler D (1991) Size-resolved measurements of cloud droplet deposition velocity to a forest canopy using an eddy correlation technique. Q J R Meteorol Soc 117(499):623–645CrossRefGoogle Scholar
  8. Bruijnzeel LA, Veneklaas EL (1998) Climatic conditions in tropical montane forest productivity: the fog has not lifted yet. Ecology 79:3–9CrossRefGoogle Scholar
  9. Bruijnzeel LA (1991) Nutrient input-output budgets of tropical forest ecosystems: a review. J Trop Ecol 7(1):1–24CrossRefGoogle Scholar
  10. Bruijnzeel LA, Proctor J (1995) Hydrology and biochemistry of tropical montane cloud forests: what do we really know? In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical Montane Cloud Forests, Ecological studies, vol 110. Springer, New York, pp 38–78CrossRefGoogle Scholar
  11. Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27(8):1023–1034CrossRefGoogle Scholar
  12. Campo J, Maass M, Jaramillo VJ, Martínez-Yrízar A, Sarukhán J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:161–179CrossRefGoogle Scholar
  13. Chadwick OA, Derry LA, Vitousek PM, Heubert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–496CrossRefGoogle Scholar
  14. Chapin FS III, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64(2):376–391CrossRefGoogle Scholar
  15. Chamberlain AC, Little P (1981) Transport and capture of particles by vegetation. In: Symposium-British Ecological Society, EdinburghGoogle Scholar
  16. Chang SC, Lai IL, Wu JT (2002) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmos Res 64(1–4):159–167CrossRefGoogle Scholar
  17. Charley JL, West NE (1975) Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J Ecol 63:945–963CrossRefGoogle Scholar
  18. Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmos Environ 32(9):1595–1603CrossRefGoogle Scholar
  19. Clarke RT (1986) The interception process in tropical rain forests: a literature review and critique. Acta Amazon 16:225–238CrossRefGoogle Scholar
  20. Corbin JD, Thomsen MA, Dawson TE, D’Antonio CM (2005) Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 145(4):511–521PubMedCrossRefGoogle Scholar
  21. Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–1424CrossRefGoogle Scholar
  22. Das R, Lawrence D, D’Odorico P, DeLonge M (2011) Impact of land use change on atmospheric P inputs in a tropical dry forest. J Geophys Res 116.
  23. Davidson CI, Wu YL (1990) Dry deposition of particles and vapors. In: Lindberg SE, Page AL, Norton SA (eds) Advances in environmental sciences, acid precipitation, Sources, depositions and canopy interactions, vol 3. Springer, New York, pp 104–216Google Scholar
  24. Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–485PubMedCrossRefGoogle Scholar
  25. DeLonge MS (2007) Hydrologically influenced feedbacks between phosphorus and vegetation in dry tropical forests. M.S. Thesis. University of Virginia, Charlottesville, VA, pp 75Google Scholar
  26. DeLonge MS, D’Odorico P, Lawrence D (2008) Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob Chang Biol 14:154–160Google Scholar
  27. D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res 112:G04010. CrossRefGoogle Scholar
  28. De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153(3):663–674PubMedCrossRefPubMedCentralGoogle Scholar
  29. De Schrijver A, Staelens J, Wuyts K, Van Hoydonck G, Janssen N, Mertens J, Gielis L, Geudens G, Augusto L, Verheyen K (2008) Effect of vegetation type on throughfall deposition and seepage flux. Environ Pollut 153(2):295–303PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dingman SL (2002) Physical hydrology. Macmillan, New York, 646 pGoogle Scholar
  31. Dise NB, Matzner E, Gundersen P (1998) Synthesis of nitrogen pools and fluxes from European forest ecosystems. In: Biogeochemical investigations at watershed, landscape, and regional scales. Springer, Dordrecht, pp 143–154CrossRefGoogle Scholar
  32. Domínguez C, Garcia Vera M, Chaumont C, Tournebize J, Villacís M, d’Ozouville N, Violette S (2017) Quantification of cloud water interception in the canopy vegetation from fog gauge measurements. Hydrol Process 31:3191–3205CrossRefGoogle Scholar
  33. Duvdevani S (1947) An optical method of dew estimation. Q J Roy Meteorol Soc 73:282–296CrossRefGoogle Scholar
  34. Eberhardt PJ, Pritchett WL (1971) Foliar applications of nitrogen to slash pine seedlings. Plant Soil 34(1):731–739CrossRefGoogle Scholar
  35. Eugster W, Burkard R, Holwerda F, Scatena FN, Bruijnzeel LA (2006) Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agric For Meteorol 139:288–306CrossRefGoogle Scholar
  36. Evenari M, Shanan L, Tadmor N (1982) The Negev: the challenge of a desert. Harvard University Press, CambridgeCrossRefGoogle Scholar
  37. Filoso S, Williams MR, Melack JM (1999) Composition and deposition of throughfall in a flooded forest archipelago. Biogeochemistry 45(2):169–195Google Scholar
  38. Fischer D, Still C, Williams A (2009) Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species. J Biogeogr 36:783–799CrossRefGoogle Scholar
  39. Forti MC, Neal C (1992) Spatial variability of throughfall chemistry in a tropical rainforest (Central Amazonia, Brazil). Sci Total Environ 120:245–259CrossRefGoogle Scholar
  40. Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55(1–2):73–106CrossRefGoogle Scholar
  41. Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. Philos Trans R Soc London B: Biol Sci 324(1223):247–265CrossRefGoogle Scholar
  42. Gutterman Y, Shem-Tov S (1997) Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Desert highlands of Israel, and its adhesion to the soil crust. J Arid Environ 35(4):695–705CrossRefGoogle Scholar
  43. Hambuckers A, Remacle J (1993) Relative importance of factors controlling the leaching and uptake of inorganic ions in the canopy of a spruce forest. Biogeochemistry 23(2):99–117CrossRefGoogle Scholar
  44. Heusinkveld BG, Berkowicz SM, Jacobs AF, Holtslag AA, Hillen WC (2006) An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J Hydrometeorol 7:825–832CrossRefGoogle Scholar
  45. Holder CD (2003) Fog precipitation in the Sierra de las Minas Biosphere, Reserve, Guatemala. Hydrol Process 17:2001–2010CrossRefGoogle Scholar
  46. Holwerda F, Burkard R, Eugster W, Scatena F, Meesters A, Bruijnzeel L (2006) Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrol Process 20:2669–2692CrossRefGoogle Scholar
  47. Houle D, Ouimet R, Paquin R, Lafamme JG (1999) Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Can J For Res 29:1944–1957CrossRefGoogle Scholar
  48. Houston J (2002) Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Hydrol Process 16:3019–3035CrossRefGoogle Scholar
  49. Ignatova N, Dambrine E (2000) Canopy uptake of N deposition in spruce (Picea abies L. Karst.) stands. Ann For Sci 57:113–120CrossRefGoogle Scholar
  50. Ingraham NL, Matthews RA (1995) The importance of fog-drip water to vegetation: Point Reyes Peninsula, California. J Hydrol 164:269–285CrossRefGoogle Scholar
  51. Jacobs AFG, Van Pul WAJ, Van Dijken A (1990) Similarity moisture dew profiles within a corn canopy. J Appl Meteorol 29(12):1300–1306CrossRefGoogle Scholar
  52. Jacobs AF, Heusinkveld BG, Berkowicz SM (1999) Dew deposition and drying in a desert system: a simple simulation model. J Arid Environ 42(3):211–222CrossRefGoogle Scholar
  53. Jacobs AF, Heusinkveld BG, Berkowicz SM (2000) Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int J Biometeorol 43(4):184–190PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jacobs AF, Heusinkveld BG, Berkowicz SM (2002) A simple model for potential dewfall in an arid region. Atmos Res 64(1):285–295CrossRefGoogle Scholar
  55. Johnson DW, Lindberg SE (1992) Processing of acidic deposition. In: Atmospheric deposition and forest nutrient cycling. Springer, New York, pp 426–466CrossRefGoogle Scholar
  56. Jordan C, Golley F, Hall J, Hall J (1980) Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotropica 12:61–66CrossRefGoogle Scholar
  57. Kaseke KF, Wang L, Seely MK (2017) Nonrainfall water origins and formation mechanisms. Sci Adv 3:e1603131PubMedPubMedCentralCrossRefGoogle Scholar
  58. Katata G, Nagai H, Kajino M, Ueda H, Hozumi Y (2010) Numerical study of fog deposition on vegetation for atmosphere–land interactions in semi-arid and arid regions. Agric For Meteorol 150(3):340–353CrossRefGoogle Scholar
  59. Kauffman JB, Sanford RL Jr, Cummings DL, Salcedo IH, Sampaio EV (1993) Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74(1):140–151CrossRefGoogle Scholar
  60. Kellman M, Hudson J, Sanmugadas K (1982) Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14(1):1–9CrossRefGoogle Scholar
  61. Kellman M (1979) Soil enrichment by neotropical savanna trees. J Ecol 67:565–577CrossRefGoogle Scholar
  62. Kidron GJ (2000) Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev highlands, Israel. Atmos Res 55(3–4):257–270CrossRefGoogle Scholar
  63. Klemm O, Wrzesinsky T, Scheer C (2005) Fog water flux at a canopy top: direct measurement versus one-dimensional model. Atmos Environ 39:5375–5386CrossRefGoogle Scholar
  64. Lawton RO, Nair US, Pielke RA Sr, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587PubMedGoogle Scholar
  65. Liu WJ, Liu WY, Li PJ, Gao L, Shen YX, Wang PY, Zhang YP, Li HM (2007) Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agric For Meteorol 143:80–91CrossRefGoogle Scholar
  66. Lloyd CR, Gash JHC, Shuttleworth WJU, Marques F, De O F (1988) The measurement and modelling of rainfall interception by Amazonian rain forest. Agric For Meteorol 43:277–294CrossRefGoogle Scholar
  67. Lovett GM (1984) Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos Environ (1967) 18(2):361–371CrossRefGoogle Scholar
  68. Lovett GM, Lindberg SM (1984) Mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027CrossRefGoogle Scholar
  69. Lovett GM, Lindberg SE (1993) Atmospheric deposition and canopy interactions of nitrogen in forests. Can J For Res 23(8):1603–1616CrossRefGoogle Scholar
  70. Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a New Hampshire forested landscape. Can J For Res 26(12):2134–2144CrossRefGoogle Scholar
  71. Malek E, McCurdy G, Giles B (1999) Dew contribution to the annual water balances in semi-arid desert valleys. J Arid Environ 42(2):71–80CrossRefGoogle Scholar
  72. Martin C, Willert D v (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol 2:229–242CrossRefGoogle Scholar
  73. Matson P (1990) Plant-soil interactions in primary succession at Hawaii Volcanoes National Park. Oecologia 85:241–246PubMedCrossRefGoogle Scholar
  74. Mayer R, Ulrich B (1974) Conclusions on the filtering action of forests from ecosystem analysis. Oecol Plant 9(2):157–168Google Scholar
  75. McGowan H, Ledgard N (2005) Enhanced dust deposition by trees recently established on degraded rangeland. J R Soc N Z 35(3):269–277CrossRefGoogle Scholar
  76. Miller EC, Panek JA, Friedland AJ, Kadlecek J, Mohnen VA (1993) Atmospheric deposition to a high-elevation forest at Whiteface Mountain, New York, USA. Tellus B Chem Phys Meteorol 45(3):209–227CrossRefGoogle Scholar
  77. Morris DM, Gordon AG, Gordon AM (2003) Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Can J For Res 33(6):1046–1060CrossRefGoogle Scholar
  78. Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–726CrossRefGoogle Scholar
  79. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33PubMedCrossRefGoogle Scholar
  80. Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. In: Macfayden A, Ford ED (eds) Advances in ecological research, vol 13. Academic, New York, pp 57–134Google Scholar
  81. Potter CS, Ragsdale HL, Swank WT (1991) Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy. J Ecol 79(1):97–115CrossRefGoogle Scholar
  82. Rea AW, Lindberg SE, Keeler GJ (2000) Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environ Sci Technol 34:2418–2425CrossRefGoogle Scholar
  83. Richards BN, Charley JL (1983) Mineral cycling processes and system stability in the eucalypt forest. For Ecol Manag 7(1):31–47CrossRefGoogle Scholar
  84. Ridolfi L, D’Odorico P, Laio F, Tamea S, Rodriguez-Iturbe I (2008) Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resour Res 44:W01435. CrossRefGoogle Scholar
  85. Rietkerk M, van de Koppel J (1997) Alternate stable states and threshold effects in semiarid grazing systems. Oikos 79:69–76CrossRefGoogle Scholar
  86. Ritter A, Regalado CM, Aschan G (2008) Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based impaction model. J Hydrometeorol 9(5):920–935CrossRefGoogle Scholar
  87. Roberts TM (1975) A review of some biological effects of lead emissions from primary and secondary smelters. In: International conference on heavy metals in the environment, vol II, Part 2. University of Toronto, Toronto, pp 503–532Google Scholar
  88. Runyan CW, D’Odorico P, Lawrence D (2012a) Physical and biological feedbacks of deforestation. Rev Geophys 50(4):RG4006CrossRefGoogle Scholar
  89. Runyan CW, D’Odorico P, Lawrence D (2012b) Effect of repeated deforestation on vegetation dynamics for phosphorus-limited tropical forests. J Geophys Res Biogeo 117:G01008CrossRefGoogle Scholar
  90. Runyan CW, D’Odorico P, Vandecar KL, Das R, Schmook B, Lawrence D (2013a) Positive feedbacks between phosphorus deposition and forest canopy trapping, evidence from Southern Mexico. J Geophys Res Biogeo 118(4):1521–1531CrossRefGoogle Scholar
  91. Runyan CW, Lawrence D, Vandecar KL, D’odorico P (2013b) Experimental evidence for limited leaching of phosphorus from canopy leaves in a tropical dry forest. Ecohydrology 6(5):806–817Google Scholar
  92. Runyan CW, D’Odorico P, Lawrence D (2012c) The effect of repeated deforestation on vegetation dynamics for phosphorus limited tropical forests. J Geophys Res 117:G01008. CrossRefGoogle Scholar
  93. Scherbatskoy T, Tyree MT (1990) Kinetics of exchange of ions between artificial precipitation and maple leaf surfaces. New Phytol 114(4):703–712CrossRefGoogle Scholar
  94. Schlesinger WH, Reynolds JF, Cunningham GF et al (1990) Biological feedbacks in global desertification. Science 247:1043–1048PubMedCrossRefGoogle Scholar
  95. Schlesinger WH, Pilmanis AM (1998) Plant–soil interactions in deserts. Biogeochemistry 42:169–187CrossRefGoogle Scholar
  96. Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ (1967) 16(7):1785–1794CrossRefGoogle Scholar
  97. Staelens J, Houle D, De Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169CrossRefGoogle Scholar
  98. Sudmeyer R, Nulsen R, Scott W (1994) Measured dewfall and potential condensation on grazed pasture in the Collie River basin, southwestern Australia. J Hydrol 154:255–269CrossRefGoogle Scholar
  99. Tobón C, Sevink J, Verstraten JM (2004) Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 70:1–25CrossRefGoogle Scholar
  100. Uclés O, Villagarcía L, Cantón Y, Domingo F (2013) Microlysimeter station for long term non-rainfall water input and evaporation studies. Agric For Meteorol 182:13–20CrossRefGoogle Scholar
  101. Vandecar KL, Runyan CW, D’Odorico P, Lawrence D, Schmook B, Das R (2015) Phosphorus input through fog deposition in a dry tropical forest. J Geophys Res Biogeosci 120(12):2493–2504CrossRefGoogle Scholar
  102. Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical forests, Colombia. J Ecol 78(4):974–992CrossRefGoogle Scholar
  103. Verry ES, Timmons DR (1977) Precipitation nutrients in the open and under two forests in Minnesota. Can J For Res 7(1):112–119CrossRefGoogle Scholar
  104. Vetaas OR (1992) Micro-site effects of trees and shrubs in dry savannas. J Veg Sci 3:337–344CrossRefGoogle Scholar
  105. Viles HA (2008) Understanding dryland landscape dynamics: do biological crusts hold the key? Geogr Compass 2(3):899–919CrossRefGoogle Scholar
  106. Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167CrossRefGoogle Scholar
  107. Walmsley JL, Schemenauer R, Bridgman HA (1996) A method for estimating the hydrologic input from fog in mountainous terrain. J Appl Meteorol 35:2237–2249CrossRefGoogle Scholar
  108. Wang L, Kaseke KF, Seely M (2017) The effects of non-rainfall water inputs on ecosystem functions. Wiley Interdiscip Rev Water 30:2077–2086Google Scholar
  109. Weathers KC, Likens GE (1997) Clouds in southern Chile: an important source of nitrogen to nitrogen-limited ecosystems? Environ Sci Tech 31(1):210–213CrossRefGoogle Scholar
  110. Weathers KC, Likens GE, Bormann FH, Bicknell SH, Bormann BT, Daube BC, Eaton JS, Galloway JN, Keene WC (1988) Cloudwater chemistry from ten sites in North America. Environ Sci Technol 22(9):1018–1026CrossRefGoogle Scholar
  111. Weathers KC, Simkin SM, Lovett GM, Lindberg SE (2006) Empirical modeling of atmospheric deposition in mountainous landscapes. Ecol Appl 16(4):1590–1607PubMedCrossRefGoogle Scholar
  112. Weaver PL (1972) Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Carrib J Sci 12:129–144Google Scholar
  113. Wedding JB, Carlson RW, Stukel JJ, Bazzaz FA (1975) Aerosol deposition on plant leaves. Environ Sci Technol 9(2):151–153CrossRefGoogle Scholar
  114. Willis AJ (1985) Dune water and nutrient regimes—their ecological relevance. In: Sand Dunes and Their Management Report of a meeting, Swansea, 1984 Nature Conservancy Council; Focus on Nature Conservation. vol 13, pp 159–174Google Scholar
  115. Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336CrossRefGoogle Scholar
  116. Yang X, Ma N, Dong J, Zhu B, Xu B, Ma Z, Liu J (2010) Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quatern Res 73:10–19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christiane Runyan
    • 1
  • Lixin Wang
    • 2
  • Deborah Lawrence
    • 3
  • Paolo D’Odorico
    • 4
  1. 1.Advanced Academic ProgramsJohns Hopkins UniversityWashington, DCUSA
  2. 2.Department of Earth SciencesIndiana University-Purdue UniversityIndianapolisUSA
  3. 3.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations