Ecohydrology of Arid and Semiarid Ecosystems: An Introduction

  • Paolo D’OdoricoEmail author
  • Amilcare Porporato
  • Christiane Runyan


Ecohydrology has been defined as “the science, which seeks to describe the hydrologic mechanisms that underlie ecologic patterns and processes” (Rodriguez-Iturbe 2000, p. 1). This type of inquiry is fundamental to the understanding of the coupling existing between ecosystem dynamics and the water cycle, in particular in arid and semiarid environments, where water is an important limiting resource not only for its scarcity but also for its intermittency and unpredictable presence (Porporato and Rodriguez-Iturbe 2002; Rodriguez-Iturbe and Porporato 2005). The biogeoscience community has recently been trying to establish stronger connections between research in the physical and the natural sciences to provide a process-based understanding of the interactions existing between the hydrosphere and the biosphere. Thus, the research area at the confluence between hydrology and ecology has received considerable attention. The term “ecohydrology,” itself, has become increasingly popular in the scientific literature. Initially used to denote an integrated study of ecological and hydrological processes in wetlands (Ingram 1987; Zalewski et al. 1997), this designation was later extended to all terrestrial ecosystems (Vertessy et al. 1996; Baird and Wilby 1999; Rodriguez-Iturbe 2000) and to the interaction between freshwater and ecosystem services (Gordon and Folke 2000).


  1. Aber JD, Melillo JM (1991) Terrestrial ecosystems. Saunders College Publishing, Philadelphia, PAGoogle Scholar
  2. Adamoli J, Sennhauser E, Acero JM, Rescia A (1990) Stress and disturbance – vegetation dynamics in the dry Chaco region of Argentina. J Biogeogr 17:491–500CrossRefGoogle Scholar
  3. Adams ME (1996) Savanna environments. In: Adams WM, Goudie AS, Orme AR (eds) The physical geography of Africa. Oxford Univ. Press, Oxford, pp 196–210Google Scholar
  4. Adler RF et al (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res 113:D22104. CrossRefGoogle Scholar
  5. American Meteorological Society (1997) Meteorological drought-policy statement. Bull Am Meteorol Soc 78:847–849CrossRefGoogle Scholar
  6. Andela N, Liu YY, Van Dijk AIJM, De Jeu RAM, McVicar TR (2013) Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10:6657–6676CrossRefGoogle Scholar
  7. Anderies JM, Janssen MA, Walker BH (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5:23–44CrossRefGoogle Scholar
  8. Archer S (1989) Have southern Texas savannas been converted to woodlands in recent history? Am Nat 134:545–561CrossRefGoogle Scholar
  9. Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion: land use, climate or CO2. Clim Chang 29:91–99CrossRefGoogle Scholar
  10. Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265:164–177CrossRefGoogle Scholar
  11. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235PubMedCrossRefGoogle Scholar
  12. Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234CrossRefGoogle Scholar
  13. Baird AJ, Wilby RL (eds) (1999) Eco-hydrology: plants and water in terrestrial and aquatic environments. Routledge, LondonGoogle Scholar
  14. Bastin J-F et al (2018) The extent of forest in dryland biomes. Science 356:635–638CrossRefGoogle Scholar
  15. Beckage B, Platt WJ, Gross LJ (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am Nat 174:805–818PubMedCrossRefGoogle Scholar
  16. Berg A, Sheffield J (2018) Climate change and drought: the soil moisture perspective. Curr Clim Chang Rep 4:180–191CrossRefGoogle Scholar
  17. Bestelmeyer BT, Tugel AJ, Peacock GL, Robinett DG, Sbaver PL, Brown JR, Herrick JE, Sanchez H, Havstad KM (2009) State-and-transition models for heterogeneous landscapes: a strategy for development and application. Rangel Ecol Manag 62:1–15CrossRefGoogle Scholar
  18. Bhattachan A, Tatlhego M, Dintwe K, Caylor KK, O’Donnell FC, Okin GS, Perrot DO, Ringrose S, D’Odorico P (2012) Evaluating ecohydrological theories of woody root distribution in the Kalahari. PLoS One 7(3):e33996. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–537. PubMedCrossRefGoogle Scholar
  20. Brady NC, Weil RR (1996) The nature and properties of soils, 11th edn. Prentice Hall, HarlowGoogle Scholar
  21. Breshears DD, Barnes FJ (1999) Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landsc Ecol 14:465–478CrossRefGoogle Scholar
  22. Brown JH, Valone TJ, Curtin CG (1997) Reorganization of an arid ecosystem in response to recent climate change. Proc Natl Acad Sci 94:9729–9733PubMedCrossRefGoogle Scholar
  23. Budyko MI (1958) The heat balance of the Earth’s surface. U.S. Dept. of Commerce, Washington, D.C., p 259Google Scholar
  24. Budyko MI (1974) Climate and life. Academic Press, Orlando, FLGoogle Scholar
  25. Buffington LC, Herbel CH (1965) Vegetational changes on a semidesert grassland range from 1858 to 1963. Ecol Monogr 35:139–164CrossRefGoogle Scholar
  26. Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the 21st century with the Hadley Centre climate model. J Hydrometeorol 7:1113–1125CrossRefGoogle Scholar
  27. Burrows WH, Carter JO, Scanlan JC, Anderson ER (1990) Management of savannas for livestock production in north-east Australia – contrasts across the tree grass continuum. J Biogeogr 17:503–512CrossRefGoogle Scholar
  28. Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and 21st century drying. Clim Dyn. CrossRefGoogle Scholar
  29. Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southerwest and central plains. Sci Adv 1:e1400082PubMedPubMedCentralCrossRefGoogle Scholar
  30. D’Antonio CM, Tunison JT, Loh RK (2000) Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. Austral Ecol 25(5):507–522CrossRefGoogle Scholar
  31. D’Odorico P, Bhattachan A (2012) Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Philos Trans R Soc Lond B Biol Sci 367:3145–3157. CrossRefPubMedPubMedCentralGoogle Scholar
  32. D’Odorico P, Ridolfi L, Porporato A, Rodriguez-Iturbe I (2000) Preferential states of seasonal soil moisture: the impact of climate fluctuations. Water Resour Res 36(8):2209–2219CrossRefGoogle Scholar
  33. D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344CrossRefGoogle Scholar
  34. D’Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D, Dell’Angelo J, Gephart JA, MacDonald GK, Seekell DA, Suweis S, Rulli MC (2018) The global food-energy-water nexus. Rev Geophys 56. CrossRefGoogle Scholar
  35. D’Odorico P, Fuentes JD, Pockman WT, Collins SL, He Y, Medeiros JA, De Wekker SFJ, Litvak ME (2010a) Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1:17Google Scholar
  36. D’Odorico P, Laio F, Porporato A, Ridolfi L, Rinaldo A, Iturbe IR (2010b) Ecohydrology of terrestrial ecosystems. Bioscience 60(11):898–907CrossRefGoogle Scholar
  37. D’Odorico P, Laio F, Ridolfi L (2006) A probabilistic analysis of fire-induced tree-grass coexistence in savannas. Am Nat 167:E79–E87PubMedCrossRefGoogle Scholar
  38. D’Odorico P, Laio F, Porporato A, Ridolfi L, Barbier N (2007) Noise-induced vegetation patterns in fire-prone savannas. J Geophys Res-Biogeosci 112:G02021.
  39. D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5):520–530CrossRefGoogle Scholar
  40. Dai AI, Fung Y, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–88. J Clim 10:2943–2962CrossRefGoogle Scholar
  41. Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects on surface warming. J Hydrometeorol 5:1117–1130CrossRefGoogle Scholar
  42. De Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115:692–702CrossRefGoogle Scholar
  43. Dodd MB, Lauenroth WK (1997) The influence of soil texture on the soil water dynamics and vegetation structure of a shortgrass steppe ecosystem. Plant Ecol 133:13–28CrossRefGoogle Scholar
  44. Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) CO2 fertilisation has increased maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–3035CrossRefGoogle Scholar
  45. Dracup JA, Lee KS, Paulson EG Jr (1980) On the statistical characteristics of drought events. Water Resour Res 16:289–296CrossRefGoogle Scholar
  46. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol and Evol 14:135–139. CrossRefGoogle Scholar
  47. du Toit J, Biggs HC, Rogers KH (2003) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington, DCGoogle Scholar
  48. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–722PubMedPubMedCentralCrossRefGoogle Scholar
  49. Feng S, Fu Q (2013) Expansion of global drylands in a warming world, Atmos. Chem Phys 13:10081–10094Google Scholar
  50. Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changing rainfall seasonality in the tropics. Nat Clim Chang 3:811–815. CrossRefGoogle Scholar
  51. Felker P, Clark PR, Nash P, Osborn JF, Cannell GH (1982) Screening prosopis (mesquite) for cold tolerance. For Sci 28:556–562Google Scholar
  52. Fensholt R et al (2012) Greenness in semi-arid areas across the globe 1981–2007: an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158CrossRefGoogle Scholar
  53. Franklin KA, Lyons K, Nagler PL, Lampkin D, Glenn EP, Molina-Freaner F, Markow T, Huete AR (2006) Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biol Conserv 127:62–71. CrossRefGoogle Scholar
  54. Fu Q, Feng S (2014) Responses of terrestrial aridity to global warming. J Geophys Res Atmos 119:7863–7875. CrossRefGoogle Scholar
  55. Gaughan AE, Stevens FR, Gibbes C, Southworth J, Winford MW (2012) Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. Int J Remote Sens 33:6783–6804CrossRefGoogle Scholar
  56. Gillette DA, Pitchford AM (2004) Sand flux in the northern Chihuahuan desert, New Mexico, USA, and the influence of mesquite-dominated landscapes. J Geophys Res-Earth Surf 109:F04003CrossRefGoogle Scholar
  57. Gordon L, Folke C (2000) Ecohydrological landscape management for human well-being. Water Int 25:178–184CrossRefGoogle Scholar
  58. Grigulis K, Lavorel S, Davies ID, Dossantos A, Lloret F, Vilà M (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Glob Chang Biol 11:1042–1053. CrossRefGoogle Scholar
  59. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83(8):1149–1165CrossRefGoogle Scholar
  60. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. CrossRefGoogle Scholar
  61. He YF, D’Odorico P, De Wekker SFJ, Fuentes JD, Litvak M (2010) On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J Geophys Res-Atmos 115:D21120CrossRefGoogle Scholar
  62. Hickler T, Eklundh L, Seaquist JW, Smith B, Ardö J, Olsson L, Sykes MT, Sjostrom M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32.
  63. Higgins SI, Bond WJ, Trollope WSW (2000) Fire, resprouting and variability: a recipe for tree-grass coexistence in savanna. J Ecol 88:213–229CrossRefGoogle Scholar
  64. Hipondoka MHT, Aranibar JN, Chirara C, Lihavha M, Macko SA (2003) Vertical distribution of grass and tree roots in arid ecosystems of southern Africa: niche differentiation or competition? J Arid Environ 54:319–325CrossRefGoogle Scholar
  65. Holdo RM (2013) Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas. PLoS One 8:e69625PubMedPubMedCentralCrossRefGoogle Scholar
  66. Huenneke LF, Anderson JP, Remmenga M, Schlesinger WH (2002) Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob Chang Biol 8:247–264CrossRefGoogle Scholar
  67. Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319CrossRefGoogle Scholar
  68. Idso SB (1992) Shrubland expansion in the American southwest. Clim Chang 22:85–86CrossRefGoogle Scholar
  69. Ingram HAP (1987) Ecohydrology of Scottish peatlands. Trans R Soc Edinb Earth Environ Sci 78:287–296CrossRefGoogle Scholar
  70. Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1996) Tree spacing and coexistence in semiarid savannas. J Ecol 84:583–595CrossRefGoogle Scholar
  71. Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N, Moloney KA (1998) Modelling the impact of small-scale heterogeneities on tree–grass coexistence in semi-arid savannas. J Ecol 86:780–793CrossRefGoogle Scholar
  72. Johnson RW, Tothill JC (1985) Definitions and broad geographic outline of savanna lands. In: Tothill JC, Mott JG (eds) Ecology and Management of the World’s Savannas. Commonwealth Agricultural Bureau, CanberraGoogle Scholar
  73. Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50:RG3002. CrossRefGoogle Scholar
  74. Kauffman JB, Cummings DL et al (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J Ecol 82(3):519–531CrossRefGoogle Scholar
  75. Keeley JE, Rundel PW (2005) Fire and the Miocene expansion of C4 grasslands. Ecol Lett 8:683–690. CrossRefGoogle Scholar
  76. Kerley GIH, Whitford WG (2009) Can kangaroo rat graminivory contribute to the persistence of desertified shrublands? J Arid Environ 73:651–657CrossRefGoogle Scholar
  77. Knoop WT, Walker BH (1985) Interactions of woody and herbaceous vegetation in a southern African savanna. J Ecol 73:235–253CrossRefGoogle Scholar
  78. Larcher W (1995) Physiological plant ecology. Springer, BerlinCrossRefGoogle Scholar
  79. Lebarbe L, Lebel T (1997) Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J Hydrol 189(43–73):1–15Google Scholar
  80. Lettau H (1969) Evapotranspiration Climatonomy: 1. A new probabilistic approach to numerical prediction of monthly evapotranspiration, runoff, and soil moisture storage. Mon Weather Rev 97:691–699CrossRefGoogle Scholar
  81. Li J, Okin GS, Hartman LJ, Epstein HE (2007) Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA. Biogeochemistry 85:317–332CrossRefGoogle Scholar
  82. Li J, Okin GS, Alvarez LJ, Epstein HE (2008) Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry 88:73–88CrossRefGoogle Scholar
  83. Liepert BG, Previdi M (2009) Do models and observations disagree on the rainfall response to global warming? J Clim 22(11):3156–3166. CrossRefGoogle Scholar
  84. Mainguet M (1994) Desertification: natural background and human mismanagement. Springer, BerlinCrossRefGoogle Scholar
  85. Mata-Gonzalez R, Figueroa-Sandoval B, Clemente F, Manzano M (2007) Vegetation changes after livestock grazing exclusion and shrub control in the southern Chihuahuan Desert. West North Am Nat 67:63–70CrossRefGoogle Scholar
  86. Meanut, J-C, and I.R. Noble (1988). A functional classification of savanna plants. In B.H. Walker and J-C Meanut (Eds.) Responses of Savannas to Stress and Disturbance: Research Procedure and Experimental Design for Savanna Ecology and Management, pp. 8-11, International Union of Biological Sciences. Report 2., ParisGoogle Scholar
  87. Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33(3):491–505CrossRefGoogle Scholar
  88. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2003). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55. Tyndall Centre for Climate Change Research, NorwichGoogle Scholar
  89. Moleele NM, Ringrose S, Matheson W, Vanderpost C (2002) More woody plants? The status of bush encroachment in Botswana’s grazing areas. J Environ Manag 64:3–11CrossRefGoogle Scholar
  90. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci U S A 98:5446–5451PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mott JJ (1972) Germination studies on some annual species from an arid region of Western Australia. J Ecol 60:293–304CrossRefGoogle Scholar
  92. Nicholson SE (1980) The nature of rainfall fluctuations in subtropical west Africa. Mon Weather Rev 108:473–487CrossRefGoogle Scholar
  93. Nicholson SE (2011) Dryland climatology. Cambridge University Press, New YorkCrossRefGoogle Scholar
  94. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  95. Nuttle W (2002) Eco-hydrology’s past and future. Eos 83(19):205–212CrossRefGoogle Scholar
  96. Okin GS, D’Odorico P, Archer SR (2009a) Impacts of feedbacks on Chihuahuan Desert grasslands: transience and metastability driven by grass recruitment. J Geophys Res 114:G01004CrossRefGoogle Scholar
  97. Okin GS, Parsons AJ, Wainwright J, Herrick JE, Bestelmeyer BT, Peters DPC, Fredrickson EL (2009b) Do changes in connectivity explain desertification? Bioscience 59:237–244CrossRefGoogle Scholar
  98. Olsson AD, Betancourt J, McClaran MP, Marsh SE (2012) Sonoran desert ecosystem transformation by a C4 grass without the grass/fire cycle. Divers Distrib 18:10–21. CrossRefGoogle Scholar
  99. Palmer WC (1965) Meteorological drought, US Weather Bureau Research Paper 45, 85 pGoogle Scholar
  100. Parsons AJ, Abrahams AD, Wainwright J (1996) Responses of interrill runoff and erosion rates to vegetation change in southern Arizona. Geomorphology 14:311–317CrossRefGoogle Scholar
  101. Peake DCI, Henzell EF, Stirk GB, Peake A (1979) Simulation of changes in herbage biomass and drought response of a buffel grass (Cenchrus ciliaris cv. biloela) in southern Queensland. Agro-Ecosystems 5:23–40. CrossRefGoogle Scholar
  102. Polley HW (1997) Implications of rising atmospheric carbon dioxide concentration for rangelands. J Range Manag 50:562–577CrossRefGoogle Scholar
  103. Polley HW, Johnson HB, Mayeux HS (1992) Carbon dioxide and water fluxes of C-3 annuals and C-3 and C-4 perennials at subambient Co-2 concentrations. Funct Ecol 6:693–703CrossRefGoogle Scholar
  104. Porporato A, Rodriguez-Iturbe I (2002) Ecohydrology – a challenging multidisciplinary research perspective. Hydrol Sci J 47(5):811–821CrossRefGoogle Scholar
  105. Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. III. Vegetation water stress. Adv Water Resour 24:725–744CrossRefGoogle Scholar
  106. Porporato A, Laio F, Ridolfi L, Caylor KK, Rodriguez-Iturbe I (2003) Soil moisture and plant stress dynamics along the Kalahari precipitation gradient. J Geophys Res 108(D3):4127. CrossRefGoogle Scholar
  107. Ramanathan V et al (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. PubMedCrossRefGoogle Scholar
  108. Rango A, Huenneke L, Buonopane M, Herrick JE, Havstad KM (2005) Using historic data to assess effectiveness of shrub removal in southern New Mexico. J Arid Environ 62:75–91CrossRefGoogle Scholar
  109. Ravi S, D’Odorico P, Collins SL, Huxman TE (2009) Can biological invasions induce desertification? New Phytol 181:512–515PubMedCrossRefGoogle Scholar
  110. Ridolfi L, D’Odorico P, Porporato A, Rodriguez-Iturbe I (2000) Duration and frequency of water stress in vegetation: an analytical model. Water Resour Res 36(8):2297–2307CrossRefGoogle Scholar
  111. Rodriguez-Iturbe I (2000) Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resour Res 36(1):3–9CrossRefGoogle Scholar
  112. Rodriguez-Iturbe I, Porporato A (2005) Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  113. Rodriguez-Iturbe I, D’Odorico P, Porporato A, Ridolfi L (1999) Tree-grass coexistence in savannas: the role of spatial dynamics and climate fluctuations. Geophys Res Lett 26(2):247–250CrossRefGoogle Scholar
  114. Rosa L, Rulli MC, Davis KF, Chiarelli D, Passera C, D’Odorico P (2018a) Closing the yield gap while ensuring water sustainability. Environ Res Lett 13:104002CrossRefGoogle Scholar
  115. Rosa L, Davis KF, Rulli MC, D’Odorico P (2018b) The water-energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. Earth’s Future 6. CrossRefGoogle Scholar
  116. Runyan CW, D’Odorico P, Lawrence DL (2012) Physical and biological feedbacks on deforestation. Rev Geophys 50:RG4006.
  117. Safriel U et al (2005) Dryland systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, The millennium ecosystem assessment series, vol 1. Island Press, Washington DC, pp 623–662. Available at Google Scholar
  118. Saha MV, Scanlon TM, D’Odorico P (2015) Examining the linkage between shrub encroachment and recent greening in water-limited southern Africa. Ecosphere 6(9):156. CrossRefGoogle Scholar
  119. Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–505PubMedCrossRefGoogle Scholar
  120. Sala OE, Lauenroth WK, Golluscio RA (1997) Plant functional types in temperate semi-arid regions. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types, International Geosphere-Biosphere Programme Book Series, vol 1. Cambridge University Press, Cambridge, pp 217–233Google Scholar
  121. Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited: insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490CrossRefGoogle Scholar
  122. Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, CambridgeCrossRefGoogle Scholar
  123. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  124. Schlesinger WH, Abrahams AD, Parsons AJ, Wainwright J (1999) Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. rainfall simulation experiments. Biogeochemistry 45:21–34Google Scholar
  125. Schlesinger WH, Reynolds JF, Cunnigham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1044PubMedCrossRefGoogle Scholar
  126. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544CrossRefGoogle Scholar
  127. Scholes RJ, Walker BH (1993) An African savanna. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  128. Scholes MC, Scholes RJ, Otter LB, Woghiren AJ (2003) Biogeochemistry: the cycling of elements. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience. Island Press, Washington, pp 130–148Google Scholar
  129. Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220PubMedCrossRefGoogle Scholar
  130. Sekhwela MBM, Yates DJ (2007) A phenological study of dominant acacia tree species in areas with different rainfall regimes in the Kalahari of Botswana. J Arid Environ 70:1–17CrossRefGoogle Scholar
  131. Seager R, Mingfang T, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau LC, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184CrossRefGoogle Scholar
  132. Sherwood S, Fu Q (2014) A drier future? Science 343:737–739PubMedCrossRefGoogle Scholar
  133. Slaymaker O, Spencer T (1998) Physical geography and global environmental change. Addison Wesley Longman, New YorkGoogle Scholar
  134. Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–81. PubMedCrossRefGoogle Scholar
  135. Sorte CJ, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270. PubMedCrossRefGoogle Scholar
  136. Thomas DSG, Twyman C (2004) Good or bad rangeland? Hybrid knowledge science and local understandings of vegetation dynamics in the Kalahari. Land Degrad Dev 15:215–231CrossRefGoogle Scholar
  137. Thomas DSG, Knight M, Wiggs GFS (2005) Remobilization of the southern African desert dune systems by twenty-first century global warming. Nature 435:1218–1221PubMedCrossRefGoogle Scholar
  138. Thorntwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  139. Tilman D, Haddi A (1992) Drought and biodiversity in grasslands. Oecologia 89:257–264. PubMedCrossRefGoogle Scholar
  140. UNEP (1992) World atlas of desertification. Edward Arnold, LondonGoogle Scholar
  141. Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215CrossRefGoogle Scholar
  142. Van de Koppel J, Rietkerk M, van Langevelde F, Kumar L, Klausmeier CA, Fryxell JM, Hearne JW, van Andel J, de Ridder N, Skidmore A, Stroosnijder L, Prins HHT (2002) Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am Nat 159:209–218CrossRefGoogle Scholar
  143. Van Vegten JA (1983) Thornbush invasion in a savanna ecosystem in eastern Botswana. Vegetatio 56:3–7CrossRefGoogle Scholar
  144. Van Wilgen BW, Govender N, Biggs HC, Ntsala D, Funda XN (2004) Response of Savanna fire regimes to changing fire-management policies in a large African National Park. Conserv Biol 18:1533–1540CrossRefGoogle Scholar
  145. Venter FJ, Scholes RJ, Eckhardt HC (2003) The abiotic template and its associated vegetation pattern. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience. Island Press, Washington, pp 81–129Google Scholar
  146. Vertessy RA, Hatton TJ, Benyon RG, Dawes WR (1996) Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration. Tree Physiol 16:221–232PubMedCrossRefGoogle Scholar
  147. Wainwright J, Parsons AJ, Abrahams AD (2000) Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrol Process 14:2921–2943CrossRefGoogle Scholar
  148. Walter H (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, EdinburghGoogle Scholar
  149. Wang L, D’Odorico P, Ries L, Caylor K, Macko S (2009) Combined effect of soil moisture and nitrogen availability variations on grass productivity in African Savannas. Plant Soil 328(1–2):95–108. CrossRefGoogle Scholar
  150. Ward D, Wiegand K, Getzin S (2013) Walter’s two-layer hypothesis revisited: back to the roots! Oecologia 172:617–630PubMedCrossRefGoogle Scholar
  151. Weltzin JF, McPherson GR (1997) Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA. Oecologia 112:156–164PubMedCrossRefGoogle Scholar
  152. Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management of rangelands not at equilibrium. J Range Manag 42:266–274CrossRefGoogle Scholar
  153. Wetherald RT, Manabe S (2002) Simulation of hydrologic changes associated with global warming. J Geophys Res 107:4379. CrossRefGoogle Scholar
  154. Whitford WG, Martinez-Turanzas G, Martinez-Meza E (1995) Persistence of desertified ecosystems: explanations and implications. Environ Monit Assess 37:319–322PubMedCrossRefGoogle Scholar
  155. Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336CrossRefGoogle Scholar
  156. Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic drought. Hydrology Paper 23, Colorado State University, Fort Collins, CO, 18 pGoogle Scholar
  157. Yu K, D’Odorico P (2015) Hydraulic lift as a determinant of tree-grass coexistence in savannas. New Phytol 207(4):1038–1051. CrossRefPubMedGoogle Scholar
  158. Yu K, Okin GS, Ravi S, D’Odorico P (2016) Potential of grass invasions in desert shrublands to create novel ecosystem states under variable climate. Ecohydrology 9(8):1496–1506CrossRefGoogle Scholar
  159. Zalewski M, Janauer GA, Jolankai G (1997) Ecohydrology: a new paradigm for sustainable management of aquatic resources. UNESCO International Hydrological Programme. UNESCO IHP Technical Document in Hydrology No. 7Google Scholar
  160. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on 20th-century precipitation trends. Nature 448:461–466PubMedCrossRefGoogle Scholar
  161. Ziska LH, Reeves JB, Blank B (2005) The impact of recent increases in atmospheric CO2 on biomass production and vegetative retention of Cheatgrass (Bromus tectorum): implications for fire disturbance. Glob Chang Biol 11:1325–1332. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paolo D’Odorico
    • 1
    Email author
  • Amilcare Porporato
    • 2
  • Christiane Runyan
    • 3
  1. 1.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Civil and Environmental Engineering and Princeton Environmental StudiesPrinceton UniversityPrincetonUSA
  3. 3.Department of Arts and Sciences, Advanced Academic ProgramsJohns Hopkins UniversityWashingtonUSA

Personalised recommendations