Advertisement

Biotechnological Advances in Rubber Tree (Hevea brasiliensis Muell. Arg.) Breeding

  • Sankaran SobhaEmail author
  • Karumamkandathil Rekha
  • Thomas K. Uthup
Chapter

Abstract

The aim of Hevea breeding is to provide new varieties/clones which are genetically superior in terms of yield, disease tolerance, better adaptability to climatic fluctuations and good timber quality. Although traditional breeding strategies could achieve a substantial increase in yield, breaking the current yield plateau is possible only with the aid of nonconventional breeding strategies. In addition to large-scale propagation, tissue culture holds unique advantages for crop improvement and this has been utilized successfully in many crops for specific purposes. Various tissue-culture techniques like somatic embryogenesis, embryo rescue, culture of protoplast, anther, pollen and embryo sac are practiced in Hevea. Interventions were also made in the area of molecular breeding through the development of molecular markers and through Agrobacterium-mediated genetic manipulation. The present chapter gives an overview on the constraints in Hevea breeding and reviews the progress of in vitro techniques comprehensively towards complementing conventional breeding. A road map to effectively combine the traditional and non-traditional methods for future Hevea breeding is presented. This takes on importance in the present scenario of unprecedented climatic vagaries and resource constraints. Progress made in the advancement of biotechnological applications in the natural rubber-producing tree Hevea brasiliensis Muell. Arg. worldwide and its implications in breeding are described in detail.

Keywords

Hevea In vitro culture Somatic embryogenesis Anther culture Cryopreservation Embryo rescue Genetic manipulation Haploids 

Notes

Acknowledgements

The authors thank Dr. James Jacob (Director of Research) for the encouragement and advice, Dr. P. Kumari Jayasree for providing literature support, Dr. T. Meenakumari and Dr. Deepthy Antony for their critical comments during the manuscript preparation.

References

  1. Akpobome FA, Mensah JK, Omokhafe KO et al (2017) Growth characteristics of in vitro plantlets of Hevea brasiliensis obtained from immature embryo culture. Int J Biosci 11(1):16.  https://doi.org/10.12692/ijb/11.1CrossRefGoogle Scholar
  2. Annamma Y, Marattukalam JG et al (1990) Promising rubber planting materials with special reference to Indian clones. In: Proceedings, planters conference Kottayam, India, pp 62–70Google Scholar
  3. Arokiaraj P (2000) Genetic transformation of Hevea Brasiliensis (rubber tree) and its applications towards crop improvement and production of recombinant proteins of commercial value. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, Forestry sciences, vol 66. Springer, Dordrecht, pp 305–325CrossRefGoogle Scholar
  4. Arokiaraj P, Wan Abdul Rahaman WY (1991) Agrobacterium-mediated transformation of Hevea cells derived from in vitro & in vivo seedling cultures. J Nat Rubb Res 6:55–61Google Scholar
  5. Arokiaraj P, Jones H, Cheong KF et al (1994) Gene insertion into Hevea brasiliensis. Plant Cell Rep 13:425–431CrossRefGoogle Scholar
  6. Arokiaraj P, Jaafar H, Hamzah S et al (1995) Enhancement of Hevea crop potential by genetic transformation: HMGR activity in transformed tissue. Aspects of the breeding of Hevea brasiliensis. In: Proceedings of IRRDB symposium on physiology molecular biology, Penang, Malaysia, pp 74–82Google Scholar
  7. Arokiaraj P, Jones H, Jaafar H et al (1996) Agrobacterium-mediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubb Res 11:77–87Google Scholar
  8. Arokiaraj P, Yeang HY, Cheong KF et al (1998) CaMV 35S promoter directs β–glucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep 17(8):621–625CrossRefGoogle Scholar
  9. Arokiaraj P, Ruker F, Obermayer E, Yeang HY (2002) Expression of human serum albumin in transgenic Hevea brasiliensis. J Rubb Res 5(3):157–166Google Scholar
  10. Asokan MP, Sobhana P, Sushamakumari S, Sethuraj MR (1988) Tissue culture propagation of rubber (Hevea brasiliensis Wild ex Adr. De Juss. Muell. Arg.) clone GT1. Ind J Nat Rubb Res 1:10–12Google Scholar
  11. Atan S, Low FC, Saleh NM (1996) Construction of a microsatellite enriched library from Hevea brasiliensis. J Nat Rubb Res 11:247–255Google Scholar
  12. Atichart P (2013) Polyploid induction by colchicine treatments and plant regeneration of Dendrobium chrysotoxum. Thai J Agricult Sci 46(1):59–63Google Scholar
  13. Auboiron E, Carron MP, Michaux-Ferriere N (1990) Influence of atmospheric gases particularly ethylene on somatic embryogenesis of Hevea brasiliensis. Plant Cell Tiss Org Cult 21:31–37CrossRefGoogle Scholar
  14. Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tis Org Cult 72(2):157–162CrossRefGoogle Scholar
  15. Baulkwill WJ (1989) The history of natural rubber production. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman, Essex, pp 1–56Google Scholar
  16. Baylin SB, Esteller M, Rountree MR et al (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Gen 10:687–692CrossRefGoogle Scholar
  17. Bednarek PT, Orłowska R, Koebner RM, Zimny J (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10CrossRefPubMedPubMedCentralGoogle Scholar
  18. Besse P, Lebrun P, Seguin LC (1993) DNA fingerprints in Hevea brasiliensis (rubber tree) using human minisatellite probes. Heredity 70:237–244CrossRefGoogle Scholar
  19. Besse P, Seguin M, Lebrun P et al (1994) Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor Appl Genet 88:199–207CrossRefGoogle Scholar
  20. Bhojwani SS, Johr BM (1971) Morphogenetic studies on cultured mature endosperm of Croton bonplandianum. New Phytol 70:761–766CrossRefGoogle Scholar
  21. Bini K (2013) Development of a genetic linkage map using molecular markers in Para rubber tree (Hevea brasiliensis). University of Kerala, PhD ThesisGoogle Scholar
  22. Blanc G, Michaux-Ferriere N, Teisson C et al (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Org Cult 59:103–112CrossRefGoogle Scholar
  23. Blanc G, Lardet L, Martin A et al (2002) Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Muell. Arg.). J Exp Bot 53:1453–1462PubMedGoogle Scholar
  24. Blanc G, Baptiste C, Oliver G et al (2006) Efficient Agrobacterium tumefaciens mediated transformation of embryogeneic calli & regeneration of Hevea brasiliensis. Mull Arg Plant Cell Rep 24(12):724–733CrossRefGoogle Scholar
  25. Bouychou JG (1953) La culture in vitro des tissues d’ Hevea. Proc Rubb Conf Bogor, 1952. Arch Rubber Cultiv 30:50–53Google Scholar
  26. Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification – heritable responses to environmental stress? Curr Opin Plant Biol 14(3):260–266CrossRefGoogle Scholar
  27. Cailloux M, Lleras E (1979) Fusão de protoplastos de Hevea brasiliensis e Hevea pauciflore. Estabelecimento de Tecnica. Acta Amaz 9:9–13CrossRefGoogle Scholar
  28. Cailloux F, Julien-Guerrier J, Linossier L, Coudret A (1996) Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant Sci 120(2):185–196CrossRefGoogle Scholar
  29. Carron MP (1981) Germination in vitro d’ embryons immatures d’ hevea. Caoutch Plastiq 58(612):4Google Scholar
  30. Carron MP, Enjalric F (1982) Studies on vegetative micropagation of Hevea brasiliensis by somatic embryogenesis and in vitro on microcutting. In: Fujiwara A (ed) Proceedings, 5th international congress of plant tissue and cell culture, Tokyo and Lake Yamanake, Japan, July 11–16, 1982, pp 751–752Google Scholar
  31. Carron MP, Enjalric E (1983) Prospects for the mocropropagation of Hevea brasiliensis. Rev Gen Caoutch Plastiq 628:65–68Google Scholar
  32. Carron MP, Enjalric E (1985) Somatic embryogenesis from inner integument of the seed of Hevea brasiliensis (Muell. Arg.). Comp Rend Acad Sci, Paris, Series III 300:653–658Google Scholar
  33. Carron MP, Enjalric E, Lardet L, Deschamps A (1989) Rubber (Hevea brasiliensis Muell. Arg.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 222–245Google Scholar
  34. Carron MP, Etienne H, Michaux- Ferriere N et al (1995) Somatic embryogenesis in rubber tree (Hevea brasiliensis Muell. Arg.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Springer, Berlin, pp 353–369Google Scholar
  35. Carron MP, le Roux Y, Tison J et al (2000) Compared root architectures in seedlings and in vitro plantlets of Hevea brasiliensis in the initial years of growth in the field. Plant Soil 223:73–85CrossRefGoogle Scholar
  36. Cazaux E, d’Auzac J (1994) Microcallus formation from Hevea brasiliensis protoplast isolated from embryogenic callus. Plant Cell Rep 13:272–276CrossRefGoogle Scholar
  37. Cazaux E, d’Auzac J (1995) Explanation for the lack of division of protoplast from stems of rubber tree (Hevea brasiliensis). Plant Cell Tiss Org Cult 41:211–219CrossRefGoogle Scholar
  38. Chaicharoen S, Satrabhandhu A, Kruatrachue M (1995) In vitro induction of polyploidy in white mulberry (Morus alba var.S54) by colchicine treatment. J Sci Soc 21:229–242Google Scholar
  39. Chandrasekhar TR, Kavitha KM, Alice J et al (1997) Intraclonal variability for yield in rubber (Hevea brasiliensis). Ind J Nat Rubb Res 10:43–47Google Scholar
  40. Chandrasekhar TR, Alice J, Gireesh T et al (2004) Observations on pollination, fecundity/siring ability and seed germination in Hevea brasiliensis. J Rubb Res 7:265–280Google Scholar
  41. Charrier B, Scollan C, Ross S et al (2000) Co-silencing of homologous transgenes in tobacco. Mol Breed 6:407–419.  https://doi.org/10.1023/A:1009672714835CrossRefGoogle Scholar
  42. Chen Z (1984) Rubber (Hevea). In: Sharp R, Associates (eds) Handbook of plant cell culture crop species, vol 2. MacMillan Publishers, New York, pp 546–571Google Scholar
  43. Chen C, Chen F, Chein C et al (1979) A process of obtaining pollen plants of Hevea brasiliensis Muell. Arg. Scientia Sinica XXII:81–90Google Scholar
  44. Chen Z, Qian C, Qin M et al (1981) Relationship between somatic cells and microspores in the process of anther cultu.re of Hevea brasiliensis Muell. Arg. Acta Bot 1:1–7Google Scholar
  45. Chen Z, Qian C, Qin M et al (1982) Recent advances in anther culture of Hevea brasiliensis (Muell. Arg.). Theor Appl Genet 62:103–113CrossRefGoogle Scholar
  46. Chevallier MH (1988) Genetic variability of Hevea brasiliensis germplasm using isozyme markers. J Nat Rubb Res 3:42–53Google Scholar
  47. Chin SW, Liou JJ, Shii CT et al (1997) Dominant expression and heat tolerance of Lilium longiflorum germplasm in distant crosses hybridization with Asiatic and oriental lilies. Acta Hort 430:495–501CrossRefGoogle Scholar
  48. Chua SE (1966) Studies on tissue culture of Hevea brasiliensis: role of osmotic concentration, carbohydrate and pH value in induction of callus growth in plumule tissue from rubber seedling. J Rubb Res 19(5):272–276Google Scholar
  49. Clément-Demange A, Legnate H, Seguin M et al (2001) Rubber tree. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. CIRAD-ORSTOM, Montpellier, pp 455–480Google Scholar
  50. Dai XM, Li Z, Hua YW et al (2014) Plant regeneration from protoplast culture of Reyan 8–79 Hevea brasiliensis (Muell. Arg.). J South Agric 45(12):2040–2045Google Scholar
  51. Dandekar AM, McGranahan GH, Leslie CA, Uratsu SL (1989) Agrobacterium mediated transformation of somatic embryos as a method for the production of transgenic plants. J Tissue Cult Meth 12:145–150CrossRefGoogle Scholar
  52. Das K, Dey SK (2009) Isolation of protoplast from leaf mesophyll cells of Hevea brasiliensis. Nat Rubb Res 22(1/2):93–98Google Scholar
  53. Das K, Sinha RR, Potty SN, Sethuraj MR (1994) Embryogenesis from anther derived callus of Hevea brasiliensis (Muell. Arg.). Ind J Hill Farm 7:90–95Google Scholar
  54. Das G, Raj S, Pothen J et al (1998) Status of free radical and its scavenging system with stimulation in Hevea brasiliensis. Plant Phys Biochem 25:47–50Google Scholar
  55. Das K, Das G, Dey SK (2003) In vitro culture of immature embryos of Hevea brasiliensis. Ind J Nat Rubb Res 16:122–126Google Scholar
  56. de Pavia JR, Kageyama PY, Vencovsky R (1993) Outcrossing rates and inbreeding coefficients in rubber tress Hevea brasiliensis (Willd. Ed. Adr. De Juss.) (Muell. Arg.). Rev Brasil Genet 16:1003–1011Google Scholar
  57. de Pavia JR, Kageyama PY, Vencovsky R (1994) Genetics of rubber tree (Hevea brasiliensis (Willd. Ex Adr. De Juss.) Muell. Arg.): 2. Mating system. Silvae Genet 43:373–376Google Scholar
  58. Dean W (1987) Brasil and the struggle for rubber. Cambridge University Press, CambridgeGoogle Scholar
  59. De-la-Peña C, Nic-Can G, Ojeda G et al (2012) KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC Plant Biol 12:203.  https://doi.org/10.1186/1471-2229-12-203CrossRefPubMedPubMedCentralGoogle Scholar
  60. Diallo AM, Nielsen LR et al (2016) Polyploidy can confer superiority to West African Acacia senegal (L.) Willd. Trees Front Plant Sci 7:821PubMedGoogle Scholar
  61. Dibi K, Boko C, Obouayeba S et al (2010) Field growth and rubber yield of in vitro micropropagated plants of clones PR 107, IRCA 18 and RRIM 600 of Hevea brasiliensis (Muell.Arg.). Agric Biol J N Am 1(6):1291–1298CrossRefGoogle Scholar
  62. Dijkman MJ (1951) Hevea: thirty years of research in the far East. University Miami Press, Coral GablesGoogle Scholar
  63. Divya UK (2016) Accomplishment of ploidy variation in Hevea brasiliensis for crop improvement. Mahathma Gandhi University, Kottayam, Kerala. PhD ThesisGoogle Scholar
  64. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509Google Scholar
  65. Duncan RR (1997) Tissue culture-induced variation and crop improvement. Adv Agron 58:201–240CrossRefGoogle Scholar
  66. Dupius I, Dumas C (1989) In vitro pollination as a model for studying fertilisation in maize (Zea mays). Sex Plant Reprod 2(4):265–269Google Scholar
  67. Durand-Gasselin T, Guen VL, Konan E, Duval Y (1990) Oil palm (Elaeis guineensis Jacq.) Plantations in Côte d’Ivoire obtained through in vitro culture: first results. Oléagin 45:1–11Google Scholar
  68. Ebinuma H, Sugitha K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. PNAS 94:2117–2121CrossRefGoogle Scholar
  69. Eeckhaut T, Lakshmanan PS, Deryckere D et al (2013) Progress in plant protoplast research. Planta 238(6):991–1003.  https://doi.org/10.1007/s00425–013–1936CrossRefPubMedGoogle Scholar
  70. EI Hadrami I, d’Auzac J (1992) Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol 140:33–36CrossRefGoogle Scholar
  71. EI Hadrami I, Michaux-Ferriere N, Carron MP, d’Auzac J (1989) Polyamines a possible limiting factor in somatic embryogenesis of Hevea brasiliensis. Comp Rend Acad Sci 308:205–211Google Scholar
  72. Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for In Vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols, Methods in molecular biology. Springer, Dordrecht, pp 229–255CrossRefGoogle Scholar
  73. Elleuch H, Gazeau C, David H, David A (1998) Cryopreservation does not affect the expression of a foreign sam gene in transgenic Papaver somniferum cells. Plant Cell Rep 18:94–98CrossRefGoogle Scholar
  74. Engelmann F, Lartaud M, Chabrillange N et al (1997) Cryopreservation of embryogenic callus of two commercial clones of Hevea brasiliensis. Cryo Lett 18:107–116Google Scholar
  75. Etienne H, Berger A, Carron MP (1991a) Water status of callus from Hevea brasiliensis during somatic embryogenesis. Phys Plant 82:213–218CrossRefGoogle Scholar
  76. Etienne H, Montoro P, Carron MP (1991b) Incidence des parameters hydriques sure le development des cals d’ Hevea brasiliensis en culture in vitro. Annal Sci For 48:253–265CrossRefGoogle Scholar
  77. Etienne H, Montoro P, Michaux-Ferrier N, Carron MP (1993a) Effects of desication, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J Exper Bot 44:1613–1619CrossRefGoogle Scholar
  78. Etienne H, Sott B, Montoro P et al (1993b) Relations between exogenous growth regulators and endogenous indole–acetic acid and abscisic acid with expression of somatic embryogenesis in Hevea brasiliensis Muell. Arg. Plant Sci 88:91–96CrossRefGoogle Scholar
  79. Etienne H, Lartaud M, Michaux-Ferriere N et al (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Muell. Arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33(2):81–87CrossRefGoogle Scholar
  80. Fagard M, Vaucheret H (2000) Transgene silencing in plants: how many mechanisms? Ann Rev Plant Phys Plant Mol Biol 51:167–194CrossRefGoogle Scholar
  81. Feng SP, Li WG, Yu F et al (2010) Construction of genetic linkage map for rubber tree (Hevea brasiliensis) based on SSR markers. Heredity 8:857–863Google Scholar
  82. Fernando DD, Owes JN, Von Aderkas P (1998) In vitro fertilisation from co-cultured pollen tubes and female gametophytes of Douglas fir (Pseudotsuga menziesii). Theor Appl Genet 96:1057–1063CrossRefGoogle Scholar
  83. Finnegan EJ (2002) Epialleles – a source of random variation in times of stress. Curr Opin Plant Biol 5(2):101–106CrossRefGoogle Scholar
  84. Gandhimathi H, Paranjothy K (1975) Anther culture attempts at induction of haploidy in Hevea and other plants. In: Proceedings of national plant tissue culture symposium, Kuala Lumpur, Malaysia, pp 32–35Google Scholar
  85. Georg PJ (2000) Germplasm resources. In: George PJ, Kuruvilla Jacob C (eds) Natural rubber. Agromanagement and crop processing. Rubber Research Institute of India, Rubber Board, Kottayam, pp 47–58Google Scholar
  86. Gonçalves P, de S, Paiva JR, Souza RA (1983) Retrospectiva e atualidade do melhoramento genético da seringueira (Hevea spp.) no Brasil e em paises asiáticos. EMBRAPA-CNPSD, Manaus, BrazilGoogle Scholar
  87. Gonzalez AI, Saiz A, Acedo A, Ruiz ML (2013) Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.). Plant Growth Regul 70:227–236.  https://doi.org/10.1007/s10725–013–9794–7CrossRefGoogle Scholar
  88. Gordon-Kamm et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618.  https://doi.org/10.1105/tpc.2.7.603CrossRefPubMedPubMedCentralGoogle Scholar
  89. Graham MW, Mudge SR, Sternes PR, Birch RG (2011) Understanding and avoiding transgene silencing. In: Stewart CN, Touraev A, Citopvsky V, Tzfira T (eds) Plant transformation technologies. Blackwell Publishing, Oxford.  https://doi.org/10.1002/9780470958988.ch12CrossRefGoogle Scholar
  90. Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96(7):1143–1164CrossRefPubMedPubMedCentralGoogle Scholar
  91. Gunatilleke ID, Samaranayake G (1988) Shoot tip culture as a method of micropropagation of Hevea. J Rubb Res Inst Sri Lanka 68:33–44Google Scholar
  92. Guo G, Jia X, Chen L (1982) Induction of plantlets from ovules in vitro of Hevea brasiliensis. Heredity 4(1):27–28Google Scholar
  93. Hao BZ, Wu JL (2000) Laticifer differentiation in Hevea brasiliensis induction by exogenous jasmonic acid and linolenic acid. Ann Bot 85:37–43CrossRefGoogle Scholar
  94. Haris Ndarussamin A, Dodd WA (1993) Isolation of rubber tree Hevea brasiliensis (Muell. Arg.) protoplasts from callus and cell suspensions. Menara-Perkebunan 61:25–31Google Scholar
  95. Hayashi Y (2009) Production of natural rubber from Para rubber tree. Plant Biotechnol 26:67–70CrossRefGoogle Scholar
  96. Hess D, Wagner G (1974) Induction of haploid parthenogenesis in Mimulus luteus by in vitro pollination with foreign pollen. Pflanzenphysiologie 72:466–468CrossRefGoogle Scholar
  97. Ho MW (2001) Horizontal gene transfer-the hidden hazards of genetic engineering. In: Biotechnology & biosafety series-IV. Third World Network, Penang, pp 1–30Google Scholar
  98. Hua YW, Huang TD, Huang HS (2010) Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breed 129:202–207CrossRefGoogle Scholar
  99. Hui Z, Ming P, Xu W et al (2009) Micropropagation of rubber tree (Hevea brasiliensis) by employing mature stem as explants. Genom Appl Biol 28(6):1169–1176Google Scholar
  100. Ighere Dickson A, Okere A, Elizabeth J et al (2011) In vitro culture of Hevea brasiliensis rubber tree. J Plant Breed Crop Sci 3(9):185–189Google Scholar
  101. IRRDB (1982) Status report of primary nursery. Manaus. In: The 1981 Germplasm Project: Reports from the three centers and on the meeting of Senior Plant Breeders, Brazil, 18th June 1982Google Scholar
  102. IRSG (2017) International Rubber Study Group. Rubber Stat Bull 72:1–3Google Scholar
  103. Jacob J, Othman R, Mydin KK (2013) International clone exchange and genetic enhancement research in Hevea brasiliensis. Rubb Sci 26(1):1–12Google Scholar
  104. Jaligot E, Beulé T, Rival A (2002) Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-associated polymorphism. Theor Appl Genet 104(8):1263–1269CrossRefGoogle Scholar
  105. Jaligot E, Beulé T, Baurens FC et al (2004) Search for methylation-sensitive amplification polymorphisms associated with the mantled variant phenotype in oil palm (Elaeis guineensis Jacq). Genome 47:224–228CrossRefGoogle Scholar
  106. Jayashree R, Rekha K, Venkatachalam P et al (2003) Genetic transformation & regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep 22:201–209CrossRefGoogle Scholar
  107. Jayashree R, Rekha K, Sushamakumari S et al (2005) Establishment of callus cultures from isolated microspores of Hevea brasiliensis. In: Paper presented at ICAR National Symposium on Biotechnological Interventions for Improvement of Horticultural Crops, Issues and Strategies, Trichur, India, pp 385–390Google Scholar
  108. Jayashree R, Sobha S, Rekha K et al (2011) Over expression of MnSOD and drought related traits in MnSOD transgenic Hevea brasiliensis. Nat Rubb Res 24(1):18–27Google Scholar
  109. Jayashree R, Nazeem PA, Venkatachalam P et al (2014) Integration and expression of hmgr1 gene in the transgenic plants of Hevea brasiliensis (clone RRII 105). In: International symposium on plantation crops, Kozhikode, Kerala, IndiaGoogle Scholar
  110. Jayashree R, Nazeem PA, Rekha K et al (2018) Over-expression of 3-hydroxy-3- methyl glutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynthesis in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Phys Biochem 127:414–442CrossRefGoogle Scholar
  111. Johnson A, Veilleux R (2001) Somatic hybridization and application in plant breeding. In: Janick J (ed) Plant Breeding Rev 20. John Wiley, New York, pp 167–225Google Scholar
  112. Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA 90:8773–8776CrossRefGoogle Scholar
  113. Kala RG, Asokan MP, Jayasree PK et al (2002) Optimization of conditions for in vitro micrografting in rubber (Hevea brasiliensis). Ind J Nat Rubb Res 15(2):165–171Google Scholar
  114. Kala RG, Jayasree PK, Sobha S et al (2003) Introduction of the gene coding for isopentenyl transferase into Hevea brasiliensis: effect on plant regeneration. In: 10th congress of FAOBMB, Bangalore, IndiaGoogle Scholar
  115. Kala RG, Anu KS, Manesh K et al (2006) Agrobacterium mediated genetic transformation in Hevea brasiliensis for recombinant protein production. J Plant Crops 34(3):582–586Google Scholar
  116. Kala RG, Kumari Jayasree P, Sushamakumari S et al (2007) In vitro regeneration of Hevea brasiliensis from leaf explants. In: Raghunatha K, Associates (eds) Recent trends in horticultural biotechnology. New India Publishing Agencies, New Delhi, pp 223–228Google Scholar
  117. Kala RG, Kuruvilla L, Kumari Jayasree P et al (2008) Secondary somatic embryogenesis and plant regeneration from leaf derived somatic embryos of Hevea brasiliensis. J Plant Crops 36(3):218–222Google Scholar
  118. Kala RG, Gimisha GC, Kumari Jayasree P et al (2009) Somatic embryogenesis in leaf cultures of Hevea brasiliensis: effect of explant source plant. Nat Rubb Res 22(1&2):117–126Google Scholar
  119. Kala RG, Supriya R, Sunie AM et al (2012) Chlorophyll A/B binding protein gene expression in juvenile and mature leaf explants and its relationship with in vitro culture response in Hevea brasiliensis. In: Paper presented at International Rubber Conference, Kovalam, Kerala, IndiaGoogle Scholar
  120. Kala RG, Reshmi J, Sobha S et al (2014) Genetic transformation of Hevea brasiliensis using intact explants as target tissues for Agrobacterium infection. J Trop Agric 52(1):21–30Google Scholar
  121. Kala RG, Tisha LT, Sobha S et al (2015) Somatic embryo germination in Hevea brasiliensis. Effect of embryo desiccation, phytohormones and phloroglucinol. Rubb Sci 28(1):52–61Google Scholar
  122. Kalawong S, Srichuay W, Sirisom Y, Te-chato S (2014) The establishment of Agrobacterium-mediated gene transformation in rubber tree through organized explants. J Agric Tech 10(2):493–503Google Scholar
  123. Kavitha KM, Nazeer MA, Licy J et al (1989) Studies on improving fruit set following hand pollination in Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell Arg. Ind J Nat Rubb Res 2:61–67Google Scholar
  124. Ke D, Mateos M, Siriphanich J et al (1993) Carbon dioxide action on metabolism of organic and amino acids in crisp head lettuce. Post Harv Biol Tech 3:235–247CrossRefGoogle Scholar
  125. Khoo SK, Yoon PK, Meignanaratnam K (1982) Early results of mother tree (ortet) selection. Plant Bull 171(6):33–49Google Scholar
  126. Koepke T, Dhingra A (2013) Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep 32:1321–1337CrossRefPubMedPubMedCentralGoogle Scholar
  127. Kouassi K, Koffi KE, Gnagne YM et al (2008) Production of Hevea brasiliensis embryos from in vitro culture of unpollinated ovules. Biotechnology 7(4):793–797CrossRefGoogle Scholar
  128. Kubis SE, Castilho AM, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79CrossRefGoogle Scholar
  129. Kumari Jayasree P, Thulaseedharan A (2004) Initiation and maintenance of long term somatic embryogenesis in Hevea brasiliensis. In: Paper presented at IRRDB Biotechnology Workshop, Kuala Lumpur, Malaysia, p 56Google Scholar
  130. Kumari Jayasree P, Asokan MP, Sobha S et al (1999) Somatic embryogenesis & plant regeneration from immature anthers of Hevea brasiliensis (Muell. Arg.). Curr Sci 76:1242–1245Google Scholar
  131. Kumari Jayasree P, Reghu CP, Kala RG, Thulaseedharan A (2012a) Histochemical changes in embryogenic and non-embryogenic calli of Hevea brasiliensis. Nat Rubb Res 25(1):86–90Google Scholar
  132. Kumari Jayasree P, Sajeevan RS, Thulaseedharan A (2012b) Changes in protein profile during different developmental stages of somatic embryogenesis in Hevea brasiliensis. Rubb Sci 25(2):183–188Google Scholar
  133. Kumari Jayasree P, Divya S, Supriya R, Thulaseedharan A (2015) Agrobacterium-mediated transformation of Hevea brasiliensis with apple cDNA encoding sorbitol-6- phosphate dehydrogenase. Rubb Sci 28(1):31–39Google Scholar
  134. Lardet L, Piombo G, Orioi F et al (1999) Relations between biochemical characteristics and conversion ability in Hevea brasiliensis zygotic and somatic embryos. Can J Bot 77:1168–1177Google Scholar
  135. Lardet L, Martin F, Dessailly F et al (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Muell. Arg.). Plant Cell Rep 26:559–569CrossRefGoogle Scholar
  136. Lardet L, Dessailly F, Carron MP et al (2008a) Secondary somatic embryogenesis in Hevea brasiliensis (Muell. Arg.): an alternative process for long term somatic embryogenesis. J Rubb Res 12(4):215–228Google Scholar
  137. Lardet L, Dessailly F, Carron MP et al (2008b) Influences of aging and cloning methods on the capacity for somatic embryogenesis of a mature Hevea brasiliensis genotype. Tree Physiol 29:291–298CrossRefGoogle Scholar
  138. Leclercq J, Martin FS, Sanier C et al (2012) Overexpression of a cytosolic isoform of the Hb CuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Mol Biol 80(3):255–272CrossRefGoogle Scholar
  139. Leconte A, Nouy B, Nicolas D (1984) Rate success of hand pollination and effects of some growth regulators on fruit set in Hevea. In: Compte-Rendu du Colloque Exploitation- Physiologie et Amélioration de l’Hevea. Montpellier, France, pp 519–525Google Scholar
  140. Lee T, Zhai J, Meyers BC (2010) Conservation and divergence in eukaryotic DNA methylation. Proc Nat Acad Sci USA 107:9027–9028CrossRefGoogle Scholar
  141. Lekawipat NK, Teerawatannasuk M, Rodier-Goud M et al (2003) Genetic diversity analysis of wild germplasm and cultivated clones of Hevea brasiliensis Muell. Arg. by using microsatellite markers. J Rubb Res 6:36–47Google Scholar
  142. Lespinasse D, Rodier-Goud M, Grivet L et al (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite and isozyme markers. Theor Appl Genet 100:127–138CrossRefGoogle Scholar
  143. Lestari M, Rio F, Martin JL et al (2017) Establishment of Hevea brasiliensis lines overexpressing genes involved in ethylene signalling pathway. Menara Perkebunan 84(1):41–46Google Scholar
  144. Li D, Zeng R, Li Y et al (2016) Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids. Sci Rep.  https://doi.org/10.1038/srep24984
  145. Licy J, Panikkar AON, Premakumari D et al (1998) Genetic parameters and heterosis in rubber (Hevea brasiliensis) Muell. Arg: early versus mature performance of hybrid clones. In: Mathew NM, Jacob CK (eds) Development in plantation crops research. Allied Publishers Limited, New Delhi, pp 9–15Google Scholar
  146. Linossier L, Veisseire P, Cailloux F, Coudret A (1997) Effect of abscisic acid and high concentration of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124:183–191CrossRefGoogle Scholar
  147. Lippman Z, Anne VG, Michael B et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476CrossRefGoogle Scholar
  148. López CMR, Wilkinson MJ (2015) Epi-fingerprinting and epi-interventions for improved crop production and food quality. Front Plant Sci 6:1–14CrossRefGoogle Scholar
  149. Low FC, Atan S, Jaafar H, Tan H (1996) Recent advances in the development of molecular markers for Hevea studies. J Nat Rubb Res 11:32–44Google Scholar
  150. Luo H, Boutry M (1995) Phylogenetic relationships within Hevea brasiliensis as deduced from a polymorphic mitochondrial DNA region. Theor Appl Genet 91:876–884CrossRefGoogle Scholar
  151. Lynen F (1969) Biochemical problems of rubber synthesis. J Rubb Res Inst Malays 21:389–406Google Scholar
  152. Ma JKC, Chikwamba R, Sparrow P et al (2005) Plant-derived pharmaceuticals-the road forward. Trends Plant Sci 10(12):580–585CrossRefGoogle Scholar
  153. Majumder SK (1964) Chromosome studies in some species of Hevea. J Rubb Res Inst Malaya 18:269Google Scholar
  154. Mantello CC, Suzuki FI, Souza LM et al (2012) Microsatellite marker development for the rubber tree (Hevea brasiliensis): characterization and cross-amplification in wild Hevea species. BMC Res Notes.  https://doi.org/10.1186/1756–0500–5–329
  155. Mantello CC, Cardoso-Silva CB, da Silva CC et al (2014) De Novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS One.  https://doi.org/10.1371/journal.pone.0102665
  156. Markose VC (1975) Colchyploidy in Hevea brasiliensis (Muell. Arg.). Rubb Board Bull 12(1):3–5Google Scholar
  157. Martre P, Lacan D, Just D, Teisson C (2001) Physiological effects of temporary immersion on Hevea brasiliensis callus. Plant Cell Tiss Org Cult 67:25–35CrossRefGoogle Scholar
  158. Matthes M, Singh R, Cheah S-C, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979CrossRefGoogle Scholar
  159. Meijón M, Feito I, Valledor L et al (2010) Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea. BMC Plant Biol 10:10.  https://doi.org/10.1186/1471–2229–10–10CrossRefPubMedPubMedCentralGoogle Scholar
  160. Mendanha ABL, de Almeida TRA, de Barros FA (1998) Micropropagation of rubber tree (Hevea brasiliensis Muell. Arg.). Genet Mol Biol 21:1415CrossRefGoogle Scholar
  161. Mendes LOT, Mendes AJ (1963) Poliploidia artificial em seringueria (Hevea brasiliensis Muell. Arg.). Bragantia 22:383–392CrossRefGoogle Scholar
  162. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725CrossRefGoogle Scholar
  163. Miki D, Shimamoto K (2008) De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene–specific and OsMet1–independent in rice. Plant J 56:539–549CrossRefGoogle Scholar
  164. Montoro P, Etienne H, Carron MP (1993) Callus friability and somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Org Cult 33:331–338CrossRefGoogle Scholar
  165. Montoro P, Etienne H, Carron MP (1995) Effect of calcium on callus friability and somatic embryogenesis in Hevea brasiliensis (Muell. Arg.): relations with callus mineral nutrition, nitrogen metabolism and water parameters. J Exp Bot 46:255–261CrossRefGoogle Scholar
  166. Montoro P, Teinseree N, Rattana W et al (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855CrossRefGoogle Scholar
  167. Montoro P, Rattana W, Pujade-Renaud V et al (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102CrossRefGoogle Scholar
  168. Montoro P, Carron MP, Granet F et al (2012) Development of new varietal types based on rejuvenation by somatic embryogenesis and propagation by conventional budding or microcutting in Hevea brasiliensis. In: Geelan D (ed) Proceedings of Seventh International Symposium on In Vitro Cuturae and Horticultural Breeding, Ghent, Belgium, pp 2–25Google Scholar
  169. Murashige T, Bitters WP, Rengan TS et al (1972) A technique of shoot apex grafting and its utilisation towards recovering virus free citrus clones. Hort Sci 7:118–119Google Scholar
  170. Musial K, Przywara L (1998) Influence of irradiated pollen on embryo and endosperm development in kiwifruit. Ann Bot 82(6):747–756CrossRefGoogle Scholar
  171. Muzik TJ (1956) Studies on the development of the embryo and seed of Hevea brasiliensis in culture. Lloydia 19:86–91Google Scholar
  172. Muzik TJ, Cruzada HZ (1958) Transmission of juvenile rooting ability from seedlings to adults of Hevea brasiliensis. Nature 101:1288CrossRefGoogle Scholar
  173. Mydin KK (2011) Polycross breeding towards evolving genetically diverse Hevea clones for sustainability. In: IRRDB International Rubber Conference 15–16 December 2011 in Chiang Mai, Thailand, pp 1–10Google Scholar
  174. Mydin KK (2012) Juvenile mature correlations and associations among rubber yield and yield attributes in Hevea brasiliensis. Nat Rubb Res 25:1–12Google Scholar
  175. Mydin KK (2014) Genetic improvement of Hevea brasiliensis: 60 years of breeding efforts in India. Rubb Sci 27(2):153–181Google Scholar
  176. Mydin KK, Gireesh T (2016) Diversity and heterosis by recombination breeding of Hevea brasiliensis in India. Rubb Sci 29(1):20–35Google Scholar
  177. Mydin KK, Jacob J, Reghu CP et al (2011) Conservation, characterization, evaluation and utilization of the 1981 IRRDB wild Hevea germplasm collection in India. In: IRRDB International Workshop on Tree Breeding, Michelin Plantations, Bahia, Brasil, 4th–7th April 2011Google Scholar
  178. Nair PKP (2010) The agronomy and economy of important tree crops of the developing world. Elsevier, AmsterdamGoogle Scholar
  179. Nair NU, Kurup PA (1990) Possible application of the ratio of HMG CoA to mevalonate in the bark of Hevea brasiliensis as an indicator of rubber yield. Physiology and Exploitation of Hevea brasiliensis. In: Proceedings of IRRDB Symposium, Kunming, ChinaGoogle Scholar
  180. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289CrossRefPubMedPubMedCentralGoogle Scholar
  181. Nayanakantha NMC, Seneviratne P (2007) Tissue culture of rubber: past, present and future prospects. Ceylon J Sci 36(2):116–125Google Scholar
  182. Nazeer MA, Saraswathyamma CK (1987) Spontaneous triploidy in Hevea brasiliensis (Wild. ex. Adr.de.juss.) Muell. Arg. J Plant Crops 15:69–71Google Scholar
  183. Nic-Can GI, López-Torres A, Barredo-Pool F et al (2013) New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One. 8(8):e72160CrossRefPubMedPubMedCentralGoogle Scholar
  184. Nor Mayati CH, Jamnah AR (2014) Induction of shoots and roots from vegetative tissue culture of Hevea brasiliensis RRIM 2020. J Trop Plant Phys 6:1–9Google Scholar
  185. Normah MN, Chin HF, Hor YL (1986) Desiccation and cryopreservation of embryogenic axes of Hevea brasiliensis Muell. Arg. Pertanika 9:299–303Google Scholar
  186. Novalina N, Sagala AD (2013) Construction of Hevea brasiliensis genetic linkage map and identification of quantitative trait loci using RAPD markers. Int J Adv Sci Eng Info Tech 3:71–75CrossRefGoogle Scholar
  187. Nuntanuwat W (2006) Relationship between the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (hmgr-1) & rubber content in Hevea brasiliensis (Willd. ex A. Juss.) Muell.Arg. cultivars RRIM 600, BPM24 & PB235. An Abstract presented to the Thaksin UniversityGoogle Scholar
  188. Ozzamback E, Schimdt H (1991) In vitro and in vivo micrografting of cherry (Prunus avium L.). Gartenbauwissenschaft 56:221–223Google Scholar
  189. Paranjothi K, Ghandimathi H (1976) Tissue and organ culture of Hevea. Proc Int Rubb Conf, Kuala Lumpur 1975 II:59–84Google Scholar
  190. Paranjothy K, Rohani O (1978) Embryoid and plantlet development from cell culture of Hevea. In: 4th International Congress Plant Tissue Cell Culture, University Calgary, Abstract 134Google Scholar
  191. Paranjothy K, Lim TM, Rohani O et al (1979) Transfer of Hevea seed germplasm. IRRDB Meet Technical Experts, Kuala LumpurGoogle Scholar
  192. Pardekooper EC (1989) Exploitation of the rubber tree. In: Webster CC, Baulkwill WL (eds) Rubber. Longman Scientific & Technical, Singapore, pp 349–414Google Scholar
  193. Perrin Y, Lardet L, Enjalric F, Carron MP (1994) Rajeunissement de clones matures d’Hevea brasiliensis (Muell, Arg.) par microgreffage in vitro. Can J Plant Sci 74:623–630CrossRefGoogle Scholar
  194. Piyatrakul P, Putranto RA, Martin F et al (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12:244.  https://doi.org/10.1186/1471-2229-12-244CrossRefPubMedPubMedCentralGoogle Scholar
  195. Pootakham W, Chanprasert J, Jomchai N et al (2011) Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (Euphorbiaceae). Am J Bot 98:337–338CrossRefGoogle Scholar
  196. Pootakham W, Ruang-Areerate P, Jomchai N et al (2015) Construction of a high-density integrated genetic linkage map of rubber tree (Hevea Brasiliensis) using genotyping-by-sequencing (GBS). Front Plant Sci 6:367.  https://doi.org/10.3389/fpls.2015.00367CrossRefPubMedPubMedCentralGoogle Scholar
  197. Pradhan S, Adams RL (1995) Distinct CG and CNG DNA methyltransferases in Pisum sativum. Plant J 3:471–481CrossRefGoogle Scholar
  198. Priyadarshan PM (2003) Breeding Hevea brasiliensis for environmental constraints. Adv Agron 79:351–400CrossRefGoogle Scholar
  199. Priyadarshan PM (ed) (2017) Biology of Hevea Rubber. Springer, Dordrecht. 251 pGoogle Scholar
  200. Priyadarshan PM, Clément-Demange A (2004) Breeding Hevea rubber: formal and molecular genetics. Adv Genet 52:51–115CrossRefGoogle Scholar
  201. Priyadarshan PM, Goncalves P (2003) Hevea genepool for breeding. Genet Resour Crop Evol 50:101–114CrossRefGoogle Scholar
  202. Priyadarshan PM, Gonçalves P, Omokhaf KO (2009) Breeding Hevea rubber. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, Dordrecht, pp 469–522CrossRefGoogle Scholar
  203. Rahman MM, Mahmood M, Abdullah N et al (2017) Somatic embryogenesis and subsequent plant regeneration from zygotic embryo derived callus of rubber (Hevea brasiliensis Muell. Arg). Plant Tissue Cult Biotech 27(1):51–61CrossRefGoogle Scholar
  204. Ramaer H (1935) Cytology of Hevea. Genetica 17:193–194CrossRefGoogle Scholar
  205. Rangaswami NS, Shivanna KR (1967) Induction of gamete compatibility and seed formation in axenic cultures of a diploid self-incompatible species of petunia. Nature 216:937–939CrossRefGoogle Scholar
  206. Rao V, Donough CR (1990) Preliminary evidence of a genetic cause for the floral abnormalities in some oil palm ramets. Elaeis 2:199–207Google Scholar
  207. Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Intersimple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor Appl Genet 97:515–519CrossRefGoogle Scholar
  208. Rekha K (2013) Agrobacterium mediated molecular breeding in Hevea brasiliensis for crop improvement. MG University, Kerala, PhD ThesisGoogle Scholar
  209. Rekha K, Jayashree R, Thomas V et al (2002) In vitro fertilization in Hevea brasiliensis: a preliminary investigation. In: Proceedings of PLACRYOSYM XV, December 2002, pp 239–245Google Scholar
  210. Rekha K, Jayashree R, Kumari Jayasree P et al (2006) An efficient protocol for Agrobacterium mediated genetic transformation in rubber tree (Hevea brasiliensis). Plant Cell Biotechnol Molec Biol 7:155–158Google Scholar
  211. Rekha K, Jayashree R, Sushamakumari S et al (2007) Endosperm culture in Hevea brasiliensis. In: Keshavachandran R, Nazeem PA, Girija D et al (eds) Recent trends in horticultural biotechnology. New India Publishers, New Delhi, pp 111–116Google Scholar
  212. Rekha K, Jayashree R, Gireesh T et al (2010) Embryo rescue and plant regeneration in Hevea brasiliensis. Nat Rubb Res 23(1/2):47–54Google Scholar
  213. Rekha, K., Jayashree, R., Sushamakumari et al (2011) Exploitation of in vitro induced zygotic polyembryony for genetic transformation in Hevea brasiliensis. In: IRRDB International Rubber Conference December 15–16, Chiang Mai, ThailandGoogle Scholar
  214. Rekha K, Jayashree R, Sushamakumari S et al (2013) Integration and expression of osmotin gene in Hevea brasiliensis via. Agrobacterium mediated transformation. J Plant Crops 40(1):80–85Google Scholar
  215. Rekha K, Nazeem PA, Venkatachalam P et al (2014) Development of osmotin transgenics in Hevea brasiliensis Muell. Arg. using explants of zygotic origin. J Trop Agric 52(1):7–20Google Scholar
  216. Rekha K, Thomas KU, Sobha S et al (2015) Genetic and epigenetic uniformity of polyembryony derived multiple seedlings of Hevea brasiliensis. Protoplasma 252:783–796CrossRefGoogle Scholar
  217. Rekha K, Nazeem PA, Venkatachalam P et al (2016) Expression of stress tolerance in transgenic cell lines. Rubb Sci 29(2):40–55Google Scholar
  218. Richardson FVM, Saoir SMA, Harvey BMR (1996) A study of the graft union in in vitro micrografted apple. Plant Growth Reg 20:17–23CrossRefGoogle Scholar
  219. Rodríguez López CM, Wetten AC, Wilkinson MJ (2010) Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol 186:856–868CrossRefGoogle Scholar
  220. Rohani O, Paranjothi K (1980) Isolation of Hevea protoplasts. J Rubb Res Inst Malaysia 28:61–66Google Scholar
  221. Roistacher CN, Kitto SL (1977) Elimination of additional citrus viruses by shoot tip grafting in vitro. Plant Dis Rep 617(7):594–596Google Scholar
  222. Roy CB, Nazeer MA, Saha T (2004) Identification of simple sequence repeats in rubber (Hevea brasiliensis). Curr Sci 87:807–811Google Scholar
  223. RRIM (1959) Development in the propagation of Hevea. Planters Bull (Rubber Research Institute of Malaysia) 45:143–146Google Scholar
  224. RRIM (1962) Propagation of Hevea cuttings. Planters Bull (Rubber Research Institute of Malaysia) 63:161–163Google Scholar
  225. Sachuthananthavale R (1973) Hevea tissue culture. Q J Rubb Res Inst Ceylon 50:91–97Google Scholar
  226. Sachuthananthavale R, Irugalbandra ZE (1972) Propagation of callus from Hevea anthers. Q J Rubb Res Inst Ceylon 49:65–68Google Scholar
  227. Saha T, Priyadarshan PM (2012) Genomics of Hevea rubber. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer, New York, pp 261–298CrossRefGoogle Scholar
  228. Saha T, Roy CB, Nazeer MA (2005) Microsatellite variability and its use in the characterization of cultivated clones of Hevea brasiliensis. Plant Breed 124:86–92CrossRefGoogle Scholar
  229. Salgado LR, Koop DM, Pinheiro DG et al (2014) De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers. BMC Genom 15:236.  https://doi.org/10.1186/1471-2164-15-236CrossRefGoogle Scholar
  230. Saraswathyamma CK, Panikkar AON (1988) Cytomixis in Hevea brasiliensis Muell. Arg. Ind J Nat Rubb Res 1(2):82–83Google Scholar
  231. Saraswathyamma CK, Markose VC, Licy J et al (1984) Cytomorphological studies in an induced polyploidy of Hevea brasiliensis (Muell. Arg.). Cytologia 49:725–729CrossRefGoogle Scholar
  232. Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78CrossRefPubMedPubMedCentralGoogle Scholar
  233. Schultes RE (1977) Wild hevea: an untapped source of germplasm. J Rubb Res Inst Sri Lanka 54:227–257Google Scholar
  234. Schultes RE (1984) The tree that changed the world in one century. Arnoldia 44:2–16Google Scholar
  235. Schultes RE (1990) A brief taxonomic view of the genus Hevea monograph No. 14. Malasyan Rubber Research and Development Board, KulalampurGoogle Scholar
  236. Senanayake YDA, Wijewantha RT (1968) Synthesis of Hevea cultivars: a new approach. Q J Rubb Res Inst Ceylon 44:16–26Google Scholar
  237. Seneviratne P (1991) Micropropagation of juvenile and mature Hevea brasiliensis., University of Bath, UK, PhD ThesisGoogle Scholar
  238. Seneviratne P, Flagmann A (1996) The effect of thidiazuron on axillary shoot proliferation of Hevea brasiliensis in vitro. J Rubb Res Inst Sri Lanka 77:1–14Google Scholar
  239. Sethuraj MR, Jacob J (2012) Thrust area of future research in natural rubber cultivation. Rubb Sci 25(2):123–138Google Scholar
  240. Shearman JR, Sangsrakru D, Jomchai N et al (2015) SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome. PLoS One.  https://doi.org/10.1371/journal.pone.0121961
  241. Shepherd R (1969) Induction of polyploids in Hevea brasiliensis. Preliminary observations on trials conducted at Prang Besar rubber research station. Plant Bull Rubb Res Inst Malaysia 104:248–256Google Scholar
  242. Shrawat AK, Becker D, Lorz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L). Plant Sci 172:281–290CrossRefGoogle Scholar
  243. Simmonds NW (1989) Rubber breeding. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman, New York, pp 85–124Google Scholar
  244. Sirisom Y, Te-Chato S (2012) The effect of peptone and silver nitrate on in vitro shoot formation in Hevea brasiliensis Muell. Arg J Agric Tech 8(4):1509–1516Google Scholar
  245. Sobha S, Sushamakumari S, Thanseem I et al (2003a) Abiotic stress induced over-expression of superoxide dismutase enzyme in transgenic Hevea brasiliensis. Ind J Nat Rubb Res 16:45–52Google Scholar
  246. Sobha S, Sushamakumari S, Thanseem I et al (2003b) Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S promoter. Curr Sci 85:1767–1773Google Scholar
  247. Sobha S, Rekha K, Sushamakumari S et al (2014) Agrobacterium mediated multiple gene integration in Hevea brasiliensis. J Trop Agric 52(1):31–38Google Scholar
  248. Sobha S, Thulaseedharan A, Nandy S, Srivastava V (2015) Towards the development of marker-free transgenic rubber tree by synthesizing a “Clean Vector” utilizing heat-inducible Cre-loxP system. In: Krishnan S, Rodrigues BF (eds) Advances in plant sciences & biotechnology. Goa University Library, R. A. Prints, Panaji, pp 198–210Google Scholar
  249. Sobhana P, Rajagopal R, Sethuraj MR, Vijayakumar KR (1995) A note on vegetative propagation of Hevea brasiliensis by air-layering. Ind J Nat Rubb Res 8(1):70–72Google Scholar
  250. Soman TA, Saraswathyamma CK (1999) Root trainer nursery for Hevea. Ind J Nat Rubb Res 12:17–22Google Scholar
  251. Soman TA, Mydin KK, Jacob J (2013) Root trainer planting technique for Hevea – a review. Rubb Sci 26(2):175–187Google Scholar
  252. Souza LM, Gazaffi R, Mantello CC et al (2013) QTL mapping of growth–related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One.  https://doi.org/10.1371/journal.pone.0061238
  253. Srichuay W, Kalawong S, Sirisom Y (2014) Callus induction and somatic embryogenesis from anther cultures of Hevea brasiliensis (Muell. Arg.). Kasetsart J Nat Sci 48:364–375Google Scholar
  254. Steward N, Ito M, Yamaguchi Y et al (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746CrossRefGoogle Scholar
  255. Stroud H, Ding B, Simon SA et al (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. ELife 2:e00354CrossRefPubMedPubMedCentralGoogle Scholar
  256. Sumesh KV, Satheesh PR, Sreelatha S et al (2014) Drought tolerance in MnSOD transgenic Hevea brasiliensis in a dry sub-humid environment. J Plant Crops 42(1):70–77Google Scholar
  257. Sun Q, Sun H, Li L, Bell RL (2009) In vitro induced polyploidy plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L) cultivar, fertility. J Hort Sci Biotechnol 84(5):548–552CrossRefGoogle Scholar
  258. Sunderasan E, Shuhada SS, Badaruddin BE et al (2010) Hevea gentic transformation for enhanced recombinant pharmasuitical production by the use of Hevein promotr. In: Malaysia conference, Kuala Lumpur May 2010, p 36Google Scholar
  259. Sunderasan E, Badaruddin BE, Azharuddin A, Arokiaraj P (2012) Genetic transformation of Hevea brasiliensis with human atrial natriuretic factor. J Rubb Res 15(4):255–264Google Scholar
  260. Sushamakumari S, Rekha K, Thomas V et al (1999) Multiple shoot formation from somatic embryos of Hevea brasiliensis (Muell. Arg.). Ind J Nat Rubb Res 12:23–28Google Scholar
  261. Sushamakumari S, Sobha S, Rekha K, Jayashree R (2000a) Influence of growth regulators and sucrose on somatic embryogenesis from immature inflorescence of Hevea brasiliensis (Muell. Arg.). Ind J Nat Rubb Res 13:19–29Google Scholar
  262. Sushamakumari S, Asokan MP, Antony P et al (2000b) Plant regeneration from embryogenic suspension derived protoplast of rubber (Hevea brasiliensis). Plant Cell Tiss Org Cult 61:81–85CrossRefGoogle Scholar
  263. Sushamakumari S, Joseph S, Sobha S et al (2012) Effect of nurse culture on inducing division of isolated pollen protoplast of Hevea brasiliensis. In: IRC 2012, IndiaGoogle Scholar
  264. Sushamakumari S, Rekha K, Sobha S, Divya UK (2014) Plant regeneration via somatic embryogenesis from root explants in Hevea brasiliensis. Rubb Sci 27(1):45–53Google Scholar
  265. Suwanmanee P, Sirinupong N, Nunthanuwat W et al (2007) Expression of HMG-CoA synthase (hmgs) & HMG-CoA reductase-1 (hmgr-1) reveal coordinated regulation of rubber biosynthesis in Hevea brasiliensis (B.H.K.) Mull. Arg. TERPNET 30, StrasbourgGoogle Scholar
  266. Tan H (1987) Strategies in rubber tree breeding. In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. Academic Press, London, pp 28–54Google Scholar
  267. Tan H, Subramaniam S (1976) A five-parent diallel cross analysis of certain characters of young Hevea seedlings. Proc Int Rubber Conf (1976) Kuala Lumpur 2:13–26Google Scholar
  268. Tan D, Sun X, Zhang J (2011) Histochemical and immune histochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Plant Cell Rep 30:1117–1124CrossRefGoogle Scholar
  269. Te-Chato S, Muangkaewngam A (1992) Tissue culture of rubber I: In vitro micropropagation of rubber. Songklankarin J Sci Tech 14:123–132Google Scholar
  270. Thomas TD, Bhatnagar AK, Bhojwani SS (2000) Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Rep 19:395–399CrossRefGoogle Scholar
  271. Thomson LC, Calendar R, Ow DW (2001) Gene insertion and replacement in Sachizo–saccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site–specific recombination system. Mol Genet Genom 265:1031–1038CrossRefGoogle Scholar
  272. Thulaseedharan A, Venkatachalam P, Jayashree R et al (2009) Rubber tree. Compendium of transgenic crop plants: transgenic plantation crops. Blackwell Publishing, Oxford, p 153Google Scholar
  273. Thulaseedharan A, Kala RG, Jayashree R et al (2017) Rubber. In: Chowdappa P, Karun A, Rajesh MK, Ramesh SV (eds) Biotechnology of plantation crops. Daya Publishing House, Astral International Pvt. Ltd., New Delhi, pp 525–553Google Scholar
  274. Toruan NL, Suryatmana N (1977) Kultur jaringan Hevea brasiliensis Muell. Arg. Menara Perkebunan 45:17–21Google Scholar
  275. Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221CrossRefPubMedPubMedCentralGoogle Scholar
  276. Valsala PA, Nair GS, Nazeem PA (1996) Seed set in ginger (Zingiber officinale Rose) through in vitro pollination. J Trop Agric 34(2):81–84Google Scholar
  277. Varghese YA, Mydin KK (2000) Genetic improvement. In: George PJ, Jacob CK (eds) Natural rubber, agromanagement & crop processing. Rubber Res Inst India, Kottayam, pp 36–46Google Scholar
  278. Varghese YA, Licy J, John A, Panikkar AON (1989) An incision method for early selection of Hevea seedlings. Ind J Nat Rubb Res 2(2):112–117Google Scholar
  279. Varghese YA, John A, Premakumari D et al (1993) Early evaluation in Hevea: Growth and yield at the juvenile phase. Ind J Nat Rubb Res 6(1/2):19–23Google Scholar
  280. Varghese YA, Knaak C, Sethuraj MR, Ecke W (1997) Evaluation of random amplified polymorphic DNA (RAPD) markers in Hevea brasiliensis. Plant Breed 116:47–52CrossRefGoogle Scholar
  281. Veisseire P, Guerrier J, Courdet A (1993) Cryopreservation of embryogenic cell suspension of Hevea brasiliensis. Cryo Lett 14:295–302Google Scholar
  282. Veisseire P, Cailloux F, Courdet A (1994a) Effect of conditional media on the somatic embryogenesis of Hevea brasiliensis. Plant Physiol Biochem 32:571–576Google Scholar
  283. Veisseire P, Linossier L, Coudret A (1994b) Effect of abscisic acid and cytokinins on the development of somatic embryos in Hevea brasiliensis. Plant Cell Tiss Org Cult 39:219–223CrossRefGoogle Scholar
  284. Venkatachalam P, Sailasree R, Priya P et al (2001) Identification of a DNA marker associated with dwarf trait in Hevea brasiliensis Muell. Arg. through random amplified polymorphic DNA analysis. In: Sainte–Beuve J (ed) Annual IRRDB meeting 2001. CIRAD, MontpellierGoogle Scholar
  285. Venkatachalam P, Thomas S, Priya P et al (2002) Identification of DNA polymorphism with the cultivated clones of rubber tree (Hevea brasiliensis Muell. Arg.). Ind J Nat Rubb Res 15:172–181Google Scholar
  286. Venkatachalam P, Jayasree PK, Sushamakumari S et al (2007) Current Perspectives on Application of Biotechnology to Assist the Genetic Improvement of Rubber Tree (Hevea brasiliensis Muell. Arg.): an overview. Funct Plant Sci Biotechnol 1:1–17Google Scholar
  287. Wang ZY, Chen XT (1995) Effect of temperature on stamen culture and somatic plant regeneration in rubber. Acta Agron Sincia 21:723–726Google Scholar
  288. Wang Z, Zeng X, Chen C et al (1980) Induction of rubber plantlets from anther of Hevea brasiliensis Muell. Arg. in vitro. Chin J Trop Crops 1:25–26Google Scholar
  289. Wang Z, Wu H, Zeng X et al (1984) Embryogeny and origin of anther plantlets of Hevea brasiliensis. Chin J Trop Crops 5:9–13Google Scholar
  290. Wang ZY, Wu HD, Chen XT (1998) Effects of altered temperature on plant regeneration frequencies in stamen culture of rubber trees. J Trop Subtrop Bot 6:166–168Google Scholar
  291. Wang Y, Chen X, Peng S, Wu K, Hong L (2013) Genetic transformation and regeneration of Hevea brasiliensis transgenic plant with GAI gene by microparticle bombardment. Roman Biotech Lett, University of Bucharest 18(1):7912Google Scholar
  292. Webster CC, Paaradkooper EC (1989) The botany of the rubber tree. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 572–584Google Scholar
  293. Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13:99CrossRefPubMedPubMedCentralGoogle Scholar
  294. Wilson ZA, Power JB (1989) Elimination of systemic contamination in explants and protoplast cultures of rubber (Hevea brasiliensis) Muell. Arg Plant Cell Rep 7:622–625PubMedGoogle Scholar
  295. Wilson HM, Street HE (1975) The growth, anatomy and morphogenetic potential of callus and cell suspension cultures of Hevea brasiliensis. Phys Planta 36:399–402CrossRefGoogle Scholar
  296. Wycherley PR (1968) Introduction of Hevea to the orient. Planter 4:1–11Google Scholar
  297. Wycherley PR (1992) The genus Hevea: botanical aspects. In: Sethuraj MR, Mathew NM (eds) Natural rubber; biology, cultivation and technology. Elsevier, Amsterdam, pp 50–66CrossRefGoogle Scholar
  298. Xia G (2009) Progress of chromosome engineering mediated by asymmetric somatic hybridization. J Genet Genom 36:547–556CrossRefGoogle Scholar
  299. Xu M, Li X, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109(5):899–910CrossRefGoogle Scholar
  300. Yeang HY, Arokiara JP, Jaafar H et al (1998) Rubber latex as an expression system for high-value proteins. In: Shewry PR, Napier JA, Davis PJ (eds) Engineering crop plants for industrial end uses. Portland Press, London, pp 55–64Google Scholar
  301. Yeang HY, Arokiara JP, Jaafar H et al (2002) Expression of a functional recombinant antibody fragment in the latex of transgenic Hevea brasiliensis. J Rubb Res 5(4):215–225Google Scholar
  302. Zenktler M (1980) Intraovarian and in vitro pollination. In: Vasil IK (ed) Perspectives in plant cell and tissue culture. In: Inter Rev Cytol, Suppl II B. Academic Press, New York, pp 137–156Google Scholar
  303. Zhou QN, Jiang ZH, Huang TD et al (2010) Plant regeneration via somatic embryogenesis from root explants of Hevea brasiliensis. Afric J Biotech 9(48):8168–8173CrossRefGoogle Scholar
  304. Zhou QN, Sun AH, Li Z (2012) Cryopreservation and plant regeneration of anther callus in Hevea by vitrification. Afric J Biotech 11(28):7212–7217Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sankaran Sobha
    • 1
    Email author
  • Karumamkandathil Rekha
    • 2
  • Thomas K. Uthup
    • 2
  1. 1.Rubber Research Institute of India (Retd)KeralaIndia
  2. 2.Advance Centre for Molecular Biology and BiotechnologyRubber Research Institute of India, Rubber BoardKottayamIndia

Personalised recommendations