Advertisement

Ramie (Boehmeria nivea L. Gaud) Genetic Improvement

  • Pratik Satya
  • Sabyasachi Mitra
  • Deb Prasad Ray
Chapter

Abstract

Ramie (Boehmeria nivea L. Gaud) is a wonderful fiber-producing plant species, but it has not received adequate care and attention from researchers. Ramie fiber is considered the longest, strongest and most durable of all known plant fibers. The fiber is composed of pure cellulose being resistant to microbial attacks. Ramie leaves are highly nutritious and can be used food as well as animal feed. In addition, different parts of the plant are used in traditional medicine in many Asian countries. Despite its high value as fiber, food, feed or medicine, the cultivation of ramie has been declining over the past 50 years. Ramie cultivation has principally been limited to China under traditional farming system. The productivity and profitability of ramie farming systems are declining gradually, although industrial demand remains high. Under this backdrop, we discuss the status of genetic improvement and cultivar development in ramie that helped to sustain production despite a decrease in area under cultivation. Also, recent progress on genetic and genomic resources have been reviewed, including genome sequencing, transcriptome characterization, diversity analysis, genetic map construction and transgenic cultivar development, which provide new opportunities to improve the genetic make-up of the cultivars for better productivity, higher resistance to biotic and abiotic stresses and improvements in fiber quality. Integration of conventional and molecular breeding methodologies are also emphasized for development of new, end-use specific cultivars.

Keywords

Biotechnology Cultivar Fiber Genetic improvement Genomics Molecular breeding Productivity 

References

  1. Acharya N, Yonekura K, Suzuki M (2003) Cytological studies of genus Boehmeria Jacq. (Urticaeae) in Nepal. J Japan Bot 78:95–102Google Scholar
  2. Al-Ani L, Deyholos MK (2018) Transcriptome assembly of the bast fiber crop, ramie, Boehmeria nivea (L.) Gaud. (Urticaceae). Fibers 6:8.  https://doi.org/10.3390/fib6010008CrossRefGoogle Scholar
  3. An X, Wang B, Liu LJ et al (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 41:3257–3269CrossRefPubMedGoogle Scholar
  4. An X, Chen J, Zhang J et al (2015) Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using Illumina paired-end sequencing technology. Int J Mol Sci 16:3493–3511CrossRefPubMedPubMedCentralGoogle Scholar
  5. An X, Zhang J, Liao Y et al (2017) Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. FEBS Open Bio 7:636–644.  https://doi.org/10.1002/2211-5463.12191CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anonymous (1989) The cultivation and utilization of ramie in the United States of America. Science 13(313):75–78.  https://doi.org/10.1126/science.ns-13.313.75CrossRefGoogle Scholar
  7. Banerjee P, Ray DP, Biswas PK (2016) Effect of inherent soil nutrients on yield and quality of ramie (Boehmeria nivea L.) fiber. Intl J Agric Environ Biotechnol 9(6):1031–1037.  https://doi.org/10.5958/2230-732X.2016.00131.5CrossRefGoogle Scholar
  8. Bellwood P, Cameron J, Viet NV et al (2007) Ancient boats, boat timbers, and locked mortise-and-tenon joints from Bronze/Iron-Age Northern Vietnam. Int J Naut Archaeol 36:2–20.  https://doi.org/10.1111/j.1095-9270.2006.00128.xCrossRefGoogle Scholar
  9. Benn CD (2002) Daily life in traditional China: the Tang dynasty. Greenwood Press, WestportGoogle Scholar
  10. Bergfjord C, Mannering U, Frei KM et al (2012) Nettle as a distinct bronze age textile plant. Sci Rep 2:664.  https://doi.org/10.1038/srep00664CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carter HA (1910) Ramie (rhea) China grass: the new textile fiber. The Technical Publishing Co. Limited, EnglandGoogle Scholar
  12. Chatterjee H, Bhattacharya SS (1957) Cytology of ramie. Proc Ind Sci Congr 3:76Google Scholar
  13. Chen RX, Luo LY, Zou SJ (1993) Evaluation of ramie resources and elite germplasm in Guizhou province. Crop Genet Resour 2:10–11Google Scholar
  14. Chen CJ, Lin Q, Friis I et al (2003) Urticaceae. Flora China 5:76–189Google Scholar
  15. Chen JH, Luan MB, Xu Y (2011) Construction of core germplasm in ramie. Plant Fiber Sci China 33:5964Google Scholar
  16. Chen J, Liu F, Tang Y et al (2014a) Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. gaud). PLoS One 9:e110623CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen J, Pei Z, Dai L et al (2014b) Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genomics 15:919CrossRefPubMedPubMedCentralGoogle Scholar
  18. Christodoulou MS, Calogero F, Baumann M et al (2015) Boehmeriasin A as new lead compound for the inhibition of topoisomerases and SIRT2. Eur J Med Chem 92:766–775.  https://doi.org/10.1016/j.ejmech.2015.01.038CrossRefPubMedGoogle Scholar
  19. Deka BC, Talukdar P (1997) Evaluation of ramie germplasm. Indian J Plant Genet Resour 10:191–195Google Scholar
  20. Dos Santos LED, Da Cunha EA, Roda DS et al (1995) Produção de leiteemcaprinosalimentados com niveiscrescentes de rami (Boehmeria nivea, Gaud.). B Industr Anim N Odessa 52:153–159Google Scholar
  21. Dusi DMA, Dubald M, de Almeida E et al (1993) Transgenic plants of ramie (Boehmeria nivea Gaud.) obtained by Agrobacterium mediated transformation. Plant Cell Rep 12:625–628CrossRefPubMedGoogle Scholar
  22. FAOSTAT (2018). http://www.fao.org/faostat. Accessed 13 Feb 2018
  23. Ferreira WM, Sartori AL, Santiago GS et al (1997) Apparent digestibility of ramie hay (Boehmeria nivea, G.), pigeon pea hay (Cajanus cajan L.), perennial soybean hay (Glycine wightii, V.) and bean husk (Phaseolus vulgaris L.) on growing rabbits. Arq Bras Med Vet Zootec 49:465–472Google Scholar
  24. Fu JP, Wang B, Liu LJ et al (2009) Transgenic Ramie with Bt gene mediated by Agrobacterium tumefaciens and evaluation of its pest-resistance. Acta Agron Sin 5:1771–1777.  https://doi.org/10.3724/SP.J.1006.2009.01771CrossRefGoogle Scholar
  25. Gao G, Xiong H, Chen K et al (2017) Gene expression profiling of ramie roots during hydroponic induction and adaption to aquatic environment. Genomics Data 14:32–35CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gawande SP, Sharma AK (2016) Conservation and utilization of ramie (Boehmeria nivea L. gaud.) germplasm for identification of resistant sources against anthracnose leaf spot. Vegetos 29:137–141Google Scholar
  27. Guo QQ, Yang RF (1996) Comparative studies on the mutagenic effects of radiation breeding with different ramie material. J Hunan Agric Univ 22(4):333–336Google Scholar
  28. Hendrickx K (2007) The origin of banana-fiber cloth in the Ryukyus, Japan. Lueven University Press, LeuvenCrossRefGoogle Scholar
  29. Hou SM, Duan JQ, Liang XN et al (2006) Detection for mtDNA of cytoplasmic male sterile (CMS) line and maintainer line of ramie [Boehmeria nivea (L.) gaud.] by ISSR. Plant Physiol Commun 42:705–707Google Scholar
  30. Huang KL, Lai YK, Lin CC (2006) Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World J Gastroenterol 12(35):5721–5725CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huang HQ, Liu JD, Duan JQ et al (2012) Cloning and characterization of the mitochondrial genes cox II and atpA from ramie (Boehmeria nivea (L.) gaud.) and their possible role in cytoplasmic male sterility. Can J Plant Sci 92:1295–1304CrossRefGoogle Scholar
  32. Huang X, Chen J, Bao Y et al (2014) Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of ramie (Boehmeria nivea L. gaud). PLoS One 9(11):e113768.  https://doi.org/10.1371/journal.pone.0113768CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jiang YB, Jie YC (2005) Advances in research on the genetic relationships of Boehmeria in China. J Plant Genet Resour 5. http://en.cnki.com.cn/Article_en/CJFDTotal-ZWYC200501024.htm
  34. Jie YC, Zhou QW, Chen PD (1999) Genetic relation analysis of ramie genetypes with RAPD marker. China Fiber Crops 21:1–6Google Scholar
  35. Kozlowaski R, Rawluk M, Barriga-Bedoya J (2005) Ramie. In: Frank RR (ed) Bast and leaf fiber crops. Woodhead Publishing Limited, UK and CRC Press LLC, USA, pp 207–227Google Scholar
  36. Kuhn D (1988) Science and civilisation in China: volume 5, chemistry and chemical technology, part 9, textile technology: spinning and reeling. Cambridge University Press, LondonGoogle Scholar
  37. Lee H, Joo N (2012) Optimization of pan bread prepared with ramie powder and preservation of optimized pan bread treated by gamma irradiation during storage. Prev Nutr Food Sci 17(1):53–63.  https://doi.org/10.3746/pnf.2012.17.1.053CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee YJ, Woo KS, Jeong HS, Kim WJ (2010) Quality characteristics of muffins with added Dukeum (pan-fried) ramie leaf (Boehmeria nivea) powder using response surface methodology. Korean J Food Cult 25:810–819Google Scholar
  39. Li JJ, Guo QQ, Chen JR (2006) RAPD analysis of lignin content for 21 ramie varieties. Plant Fibers Products 28:120–124Google Scholar
  40. Li Z, Chen J, Zhou J et al (2016) High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22:548–557CrossRefGoogle Scholar
  41. Liang XN, Liu FH, Zhang SW et al (1999) Analyses on physiological and biochemical properties of 6 varieties of ramie from Jiangxi Province. Plant Physiol Commun 35:281–284Google Scholar
  42. Liao L, Li TJ, Liu ZL et al (2009) Phylogenetic relationship of ramie and its wild relatives based on cytogenetics and DNA analyses. Acta Agron Sin 35:1778–1790Google Scholar
  43. Liao L, Li T, Zhang J et al (2014) The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud. inFreyc.) determined by nuclear SSR marker analysis. Genet Resour Crop Evol 61:55–67CrossRefGoogle Scholar
  44. Lin CC, Yen MH, Lo TS et al (1998) Evaluation of the hepatoprotective and antioxidant activity of Boehmeria nivea var. nivea and B. nivea var. tenacissima. J Ethnopharmacol 60:9–17CrossRefPubMedGoogle Scholar
  45. Liu FH, Liang XN, Huang HQ (1998) Identification of fertility in ramie male sterile line. Acta Agric Univ Jiangxiensis 20:197–198Google Scholar
  46. Liu LJ, Sun ZX, Peng DX (2006) Optimization for ISSR reaction system in ramie (Boehmeria nivea L. Gaud.). Chin Agric Sci Bull 22:64–68Google Scholar
  47. Liu LJ, Peng DX, Wang B (2008) Genetic relation analysis on ramie (Boehmeria nivea L. Gaud.) inbred lines by SRAP markers. Agric Sci China 7:944–949CrossRefGoogle Scholar
  48. Liu FH, Huang HQ, Zhang SW et al (2011) Photo-temperature response of ramie (Boehmeria nivea (L.) Gaud.) male sterile lines. Agril Sci 2:111–116Google Scholar
  49. Liu XL, Zhang SW, Duan JQ et al (2012) Mitochondrial genes atp6 and atp9 cloned and characterized from ramie (Boehmeria nivea (L.) Gaud.) and their relationship with cytoplasmic male sterility. Mol Breeding 30:23–32CrossRefGoogle Scholar
  50. Liu T, Zhu S, Tang Q et al (2013a) Identification of drought stress-responsive transcription factors in ramie (Boehmerianivea L. Gaud). BMC Genomics 13:130CrossRefGoogle Scholar
  51. Liu T, Zhu S, Fu L et al (2013b) Development and characterization of 1827 expressed sequence-tag derived simple sequence repeat markers in ramie (Boehmeria nivea L. Gaud). PLoS One 8:e60346CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu T, Zhu S, Tang Q et al (2013c) De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics 14:125CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu T, Tang S, Zhu S et al (2014) Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol 86:85–92CrossRefPubMedGoogle Scholar
  54. Liu T, Zhu S, Tang Q et al (2015a) Identification of a CONSTANS homologous gene with distinct diurnal expression patterns in varied photoperiods in ramie (Boehmeria nivea L. Gaud). Gene 560(1):63–70CrossRefPubMedGoogle Scholar
  55. Liu T, Zhu S, Tang Q et al (2015b) Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Gene 558:131–137CrossRefPubMedGoogle Scholar
  56. Liu C, Zeng L, Zhu S et al (2017) Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res 25:173–181.  https://doi.org/10.1093/dnares/dsx047CrossRefPubMedCentralGoogle Scholar
  57. Luan MB, Chen JH, Xu Y et al (2010) Method of establishing ramie core collection. Acta Agron Sin 36:2099–2106CrossRefGoogle Scholar
  58. Luan MB, Zou ZZ, Zhu JJ et al (2014) Development of a core collection for ramie by heuristic search based on SSR markers. Biotechnol Biotechnol Equip 28:798–804CrossRefPubMedPubMedCentralGoogle Scholar
  59. Luan MB, Liu CC, Wang XF et al (2017) SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Ind Crop Prod 107:439–445CrossRefGoogle Scholar
  60. Luo SY, Yan WJ, Zhao LN et al (1991) Selection of a new ramie cultivar 74-69. China’s Fiber Crops 4:5–10Google Scholar
  61. Ma X, Yu C, Tang S et al (2009) Genetic transformation of the bast fiber plant ramie (Boehmeria nivea Gaud.) via Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 100:165–174.  https://doi.org/10.1007/s11240-009-9633-8CrossRefGoogle Scholar
  62. Ma X, Wei G, Grifa C et al (2017) Multi-analytical studies of archaeological Chinese earthen plasters: the inner wall of the Longhu Hall (Yuzhen Palace, Ancient Building Complex, Wudang Mountains, China). Archaeometry 60:1–18.  https://doi.org/10.1111/arcm.12318CrossRefGoogle Scholar
  63. Maiti RK (1979) A study of the microscopic structure of the fiber strands of common Indian bast fibers and its economic implications. Econ Bot 33:78–87CrossRefGoogle Scholar
  64. Maiti RK, Rodriguez HG, Satya P (2010) Horizon of world plant fibers: an insight. Pushpa Publishing House, KolkataGoogle Scholar
  65. Ministry of Agriculture, People’s Republic of China (2008) State of plant genetic resources for food and agriculture in china (1996–2007). Country report on the state of plant genetic resources for food and agricultureGoogle Scholar
  66. Mitra S, Saha S, Guha B et al (2013) Ramie: the strongest bast fiber of nature, Technical bulletin no. 8. Central Research Institute for Jute and Allied Fibers, Indian Council of Agricultural Research (ICAR), Barrackpore, Kolkata, IndiaGoogle Scholar
  67. Pandey SN (2007a) Ramie fiber: part I. Chemical composition and chemical properties. A critical review of recent developments. Text Prog 39:1–66.  https://doi.org/10.1080/00405160701580055CrossRefGoogle Scholar
  68. Pandey SN (2007b) Ramie fiber: part II. Physical fiber properties. A critical appreciation of recent developments. Text Prog 39:189–268.  https://doi.org/10.1080/00405160701706049CrossRefGoogle Scholar
  69. Pandey SN, Krishnan SRA (1990) Fifty years of research (1939–1989). Jute Technological Research Laboratory, Indian Council of Agricultural Research, Calcutta, pp 54–55Google Scholar
  70. Peng DX (1993) Selection methods for purification of ramie breeding lines. J Huazhong Agric Univ 12:106–111Google Scholar
  71. Pierozzi NI, Baroni RM (2014) Karyotype analysis using C- and NOR-banding in Ramie [Boehmeria nivea (L.) Gaud.]. Cytologia 79:261–268CrossRefGoogle Scholar
  72. Pierozzi NI, Benatti R (1998) Cytological analysis in the microsporogenesis of ramie Boehmeria nivea Gaud. (Urticaceae) and the effect of colchicine on the chiasma frequency. Cytologia 63:213–221CrossRefGoogle Scholar
  73. Pierozzi NI, Baroni RM, Benatti R (2008) Cytological investigations of the microsporogenesis in male-sterile ramie (Boehmeria nivea Gaud.) and its offspring. Cytologia 73:21–31CrossRefGoogle Scholar
  74. Rivas Pava MDP, Muñoz Lara DG, Ruiz Camayo MA et al (2017) Colección Mastozoológica del Museo de Historia Natural de la Universidad del Cauca. Universidad del Cauca. Occurrence Dataset.  https://doi.org/10.15468/dl.crirgn. Accessed via GBIF.org on 27 Feb 2018
  75. Sarkar D, Sinha MK, Kundu A et al (2010) Why is ramie the strongest but stiffest of bast fibers? Curr Sci 98:1571–1572Google Scholar
  76. Sarma BK (2008) Ramie: the steel wire fiber–a review of research on ramie (Boehmeria nivea) in India and elsewhere. DB Publication, GuwahatiGoogle Scholar
  77. Satya P, Chakraborty M (2015) Development and utilization of DNA markers for genetic improvement of bast fiber crops. In: Tashki K (ed) Applications of molecular markers in plant genome analysis and breeding. Research Signpost, Trivandrum, pp 119–142Google Scholar
  78. Satya P, Karan M, Jana S et al (2015) Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene 3:62–70CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sharma AK, Gawande SP, Karmakar PG et al (2014) Genetic resource management of ramie (Boehmeria sp.): a bast fiber crop of north eastern India. Vegetos 27:279–286Google Scholar
  80. Sharma AK, Gawande SP, De RK et al (2017) Ramie variety R 1411 (Hazarika). Indian J Genet Plant Breed 77:439–440Google Scholar
  81. UN Comtrade (2018). https://comtrade.un.org. Accessed 15 Jan 2018
  82. UNESCO (2011) Weaving of mosi (fine ramie) in the Hansan region. http://www.unesco.org/culture/ich/en/RL/00453. Accessed 15 Jan 2018
  83. Wang WC (1995) Boehmeria. In: Wang WT, Chen CJ (eds) Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp 187–312. (in Chinese)Google Scholar
  84. Wang B, Peng D, Sun Z et al (2008) In vitro plant regeneration from seedling-derived explants of ramie [Boehmeria nivea (L.) Gaud]. In Vitro Cell Dev Biol Plant 44:105–111CrossRefGoogle Scholar
  85. Wen L, Yu CM, Wang YZ et al (2011) Application of molecular marker SRAP on analysis of genetic diversity of polyembryonic ramie seedlings. J Hunan Agric Univ Nat Sci 37:243–247Google Scholar
  86. Wilmot-Dear CM, Friis I (2013) The Old World species of Boehmeria (Urticaceae, tribus Boehmerieae). A taxonomic revision. Blumea 58:85–216CrossRefGoogle Scholar
  87. Xiong H, Yu C, Wang Y et al (2005) Study on selection and breeding of new feed ramie variety Zhongsizhu no.1. Plant Fibers Prod 27:1–4Google Scholar
  88. Xu Y, Chen JH, Luan MB (2011a) Research progress on conservation techniques for ramie germplasm resources. J Plant Genet Resour 12:184–189Google Scholar
  89. Xu QM, Liu YL, Li XR et al (2011b) Three new fatty acids from the roots of Boehmeria nivea (L.) Gaudich and their antifungal activities. Nat Prod Res 25:640–647CrossRefPubMedGoogle Scholar
  90. Yan CG (2000) Observation on ultrastructure of phloem fiber of ramie. J Hunan Agric Univ 26:31–33Google Scholar
  91. Yang Y, Zhu G (1997) A study on “two-line” cross combinations of ramie (Boehmeria nivea). J Southwest Agric Univ 19:148–151Google Scholar
  92. Yao YF, Zeng RQ, Lian DM et al (2017) Selective breeding of new forage ramie variety Minsizhu no. 1. Fujian J Agric Sci 32:119–123Google Scholar
  93. Zeng L, Shen A, Chen J et al (2016) Transcriptome analysis of ramie (Boehmeria nivea L. Gaud.) in response to ramie moth (Cocytodes coerulea Guenée) infestation. Biomed Res Int 2016:3702789.  https://doi.org/10.1155/2016/3702789CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhang JC, Zheng CQ, Chen RX et al (1992) Evaluation of resistance to leaf mosaic disease in ramie germplasms. China’s Fiber Crops 3:28–29Google Scholar
  95. Zhang ZH, Wei G, Yang Y, Shu ZX (2005) Breeding and utilization of ramie male sterility line ‘C26’. Plant Fibers Prod 27:109–112Google Scholar
  96. Zheng CQ, Zhang B, Lin HR (1996) Characterization and evaluation of water-submersion resistance in ramie germplasms. China’s Fiber Crops 1:7–12Google Scholar
  97. Zhou RY (1993) Preliminary characterization of photoperiod insensitive gynoecious ramie (Boehmeria nivea L.). China’s Fiber Crops 2:1–6Google Scholar
  98. Zhou JL, Jie YC, Jiang YB (2004) Genetic relation analysis on ramie cultivars with microsatellite markers. Acta Agron Sin 30:289–292Google Scholar
  99. Zhou JL, Jie YC, Jiang YB et al (2005) Development of simple sequence repeats (SSR) markers of ramie and comparison of SSR and inter-SSR marker systems. Progr Nat Sci 15:136–142Google Scholar
  100. Zhou C, Xue Y, Ma Y (2017) Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 101(9):3663–3676.  https://doi.org/10.1007/s00253-017-8110-2CrossRefPubMedGoogle Scholar
  101. Zhu G, Wei XM, Xu JJ et al (1993) Selection of a new ramie cultivar Chuanzhu 4. China’s Fiber Crops 2:19–21Google Scholar
  102. Zhu S, Tang S, Tang Q et al (2014) Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Gene 552:67–74Google Scholar
  103. Zou ZZ, Chen JH, Luan MB et al (2012) Evaluation of genetic relationship in ramie based on RSAP, SRAP, and SSR. Acta Agron Sin 38:840–847CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pratik Satya
    • 1
  • Sabyasachi Mitra
    • 1
  • Deb Prasad Ray
    • 2
  1. 1.Indian Council of Agricultural Research-Central Research Institute for Jute and Allied FibresBarrackpore, KolkataIndia
  2. 2.Indian Council of Agricultural Research-National Institute of Natural Fibre Engineering and TechnologyKolkataIndia

Personalised recommendations