Advertisement

Cotton (Gossypium hirsutum L.) Breeding Strategies

  • Saeed Rauf
  • Muhammad Shehzad
  • Jameel M. Al-Khayri
  • Hafiz Muhammad Imran
  • Ijaz Rasool Noorka
Chapter

Abstract

This chapter is focused on the achievements and future prospects of cotton breeding and related biotechnology. Traditional plant breeding has been utilized for the development of pure-line selection for high yielding cotton genotypes in segregating generations through the pedigree method. Selection criteria include boll number plant−1, boll mass, sympodial branches and ginning outturn percentage. Plant breeder efforts have been fruitful in releasing cotton cultivars with high yield potential and superior lint quality traits. Traditional breeding efforts resulted in the increase of seed cotton yield and fiber length. The calculated increase in the yield potential was 1.34 kg ha−1 year−1. However, further genetic gains due to selection for high-yield potential reached a plateau in the last two decades and the recent increase in yield was due to better cotton husbandry techniques. Cotton ideotypes specifically for various agronomic and environmental conditions may be developed. Moreover, utilization of wild relatives for the introgression of disease resistance and abiotic stress tolerance is proposed through traditional plant breeding along with molecular markers to reduce linkage drags due to wild relatives. These high yielding cultivars with superior agronomic and adaptability traits may be further used for the development of transgenics. Genome editing technique such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats: associated protein) is one of the emerging technologies to knock out genes or SNP (single nucleotide polymorphism) substitution at specific site with future prospects for the development of disease resistant crop cultivars.

Keywords

CRISPR Genetic gains Ideotype Introgression Transgenic Wild relatives 

References

  1. Ahsan MZ, Majidano MS, Channa AR et al (2014) Regeneration of cotton (Gossypium hirsutum L.) through asexual methods, a review. Am Eurasian J Agric Environ Sci 14(12):1478–1486Google Scholar
  2. Al-Bahrany AM, Al-Khayri JM (2000) Genotype variability in fatty acid composition and chemical characteristics of cotton (Gossypium hirsutum L.). Pak J Biol Sci 3:1778–1780CrossRefGoogle Scholar
  3. Almeida VCD, Hoffmann LV, Yokomizo GKI et al (2009) In situ and genetic characterization of Gossypium barbadense populations from the states of Pará and Amapá, Brazil. Pesq Agropec Bras 44(7):719–725CrossRefGoogle Scholar
  4. Altman DW, Fryxell PA, Koch SD, Howell CR (1990) Gossypium germplasm conservation augmented by tissue culture techniques for field collecting. Econ Bot 44(1):106–113CrossRefGoogle Scholar
  5. Anayol E, Bakhsh A, Karakoç ÖC et al (2016) Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10(2):83–94CrossRefGoogle Scholar
  6. Anderson DM, Rajasekaran K (2016) The global importance of transgenic cotton. In: Ramawat KG, Ahuja MR (eds) Fiber plants, sustainable development and biodiversity. Springer, Cham, pp 17–33Google Scholar
  7. Aqeel M, Raza A (2017) CRISPR/cas9: an emerging revolution in therapeutics. Int J Appl Biol Foren 1:1–4CrossRefGoogle Scholar
  8. Arpat A, Waugh M, Sullivan JP et al (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54(6):911–929CrossRefGoogle Scholar
  9. Ashraf J, Zuo D, Wang Q et al (2018) Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J 16(3):699–713CrossRefPubMedPubMedCentralGoogle Scholar
  10. Aslam M, Haq MA, Bandesha AA, Haidar S (2018) NIAB-777: an early maturing, high yielding and better quality cotton mutant developed through pollen irradiation technique – suitable for high density planting. J Anim Plant Sci 28(2):636–646Google Scholar
  11. Azhar M, Anjum Z, Mansoor S (2013) Gossypium gossypioides: a source of resistance against cotton leaf curl disease among D genome diploid cotton species. J Anim Plant Sci 23:1436–1440Google Scholar
  12. Bechere E, Meredith WR, Boykin JC (2013) Registration of mutant population MD 15 M4 Gossypium hirsutum L. with enhanced fiber quality. J Plant Regist 7(2):216–219CrossRefGoogle Scholar
  13. Bell A, Robinson AF (2004) Development and characteristics of triple species hybrids used to transfer reniform nematode resistance from Gossypium longicalyx to Gossypium hirsutum. In: Proceedings of beltwide cotton conferences, New Orleans, USA, National Cotton Council of America, pp 422–426. https://naldc.nal.usda.gov/download/12353/PDF
  14. Blaise D (2006) Yield, boll distribution and fibre quality of hybrid cotton (Gossypium hirsutum L.) as influenced by organic and modern methods of cultivation. J Agron Crop Sci 192:248–256CrossRefGoogle Scholar
  15. Bo Li J, Ni Dong X, Lei Z et al (2016) Simultaneous overexpression of the HhERF2 and PeDREB2a genes enhanced tolerances to salt and drought in transgenic cotton. Protein Pept Lett 23(5):450–458CrossRefGoogle Scholar
  16. Bolek Y, El-Zik KM, Pepper AE et al (2005) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590CrossRefGoogle Scholar
  17. Brévault T, Heuberger S, Zhang M et al (2013) Potential shortfall of pyramided transgenic cotton for insect resistance management. Proc Natl Acad Sci 110(15):5806–5811CrossRefGoogle Scholar
  18. Campbell BT, Saha S, Percy R, Frelichowski J, Jenkins JN, Park W, Du X (2010) Status of the global cotton germplasm resources. Crop Sci 50(4):1161–1179CrossRefGoogle Scholar
  19. Chen D, Wu Y, Zhang X, Li F (2015a) Analysis of [Gossypium capitis-viridis×(G. hirsutum× G. australe)2] trispecific hybrid and selected characteristics. PLoS One 10(6):e0127023.  https://doi.org/10.1371/journal.pone.0127023CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen Y, Wang Y, Zhao T et al (2015b) A new synthetic amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum lays the foundation for transferring resistances to Verticillium and drought. PLoS One 10(6):e0128981CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen X, Lu X, Shu N et al (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304.  https://doi.org/10.1038/srep44304CrossRefPubMedPubMedCentralGoogle Scholar
  22. Constable GA, Bange MP (2015) The yield potential of cotton (Gossypium hirsutum L.). Field Crop Res 182:98–106CrossRefGoogle Scholar
  23. de Carvalho LPD, Farias FJC, Lima MMDA, Rodrigues JIDS (2014) Inheritance of different fiber colors in cotton (Gossypium barbadense L.). Crop Breed Appl Biotechnol 14(4):256–260CrossRefGoogle Scholar
  24. Diouf FBH, Benbouza H, Nacoulima NL et al (2014) Segregation distortions in an interspecific cotton population issued from the [(Gossypium hirsutum x G. raimondii) 2 × G. sturtianum] hybrid. Tropicultura 32:73–79Google Scholar
  25. Dong H, Li W, Tang W, Zhang D (2004) Development of hybrid Bt cotton in China – a successful integration of transgenic technology and conventional techniques. Curr Sci 86(6):778–782Google Scholar
  26. Dong HZ, Li WJ, Tang W et al (2005) Increased yield and revenue with a seedling transplanting system for hybrid seed production in Bt cotton. J Agron Crop Sci 191(2):116–124CrossRefGoogle Scholar
  27. Dongre AB, Raut MP, Bhandarkar MR, Meshram KJ (2011) Identification and genetic purity testing of cotton F 1 hybrid using molecular markers. Indian J Biotechnol 10:301–306Google Scholar
  28. Evans DA, Bravo JE (1983) Plant protoplast isolation and culture. Int Rev Cytol Suppl 16:33–53Google Scholar
  29. FAO (2014) Food and Agriculture data. Retrieved from http://www.fao.org/faostat/en/#home. Accessed 19 Mar 2016
  30. FAO (2016) Food and Agriculture data. Retrieved from http://www.fao.org/faostat/en/#home. Accessed 20 Feb 2016
  31. Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8(10):586–589CrossRefGoogle Scholar
  32. Fu L, Yang X, Zhang X et al (2009) Regeneration and identification of interspecific asymmetric somatic hybrids obtained by donor-recipient fusion in cotton. Chin Sci Bull 54(17):3035–3044CrossRefGoogle Scholar
  33. Fuller RJ, Liddiard VM, Hess JR et al (2011) Improving cotton embryo culture by simulating in ovulo nutrient and hormone levels. In Vitro Cell Dev Biol Plant 47(3):410–419CrossRefGoogle Scholar
  34. Gairola KC, Nautiyal AR, Dwivedi AK (2011) Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Adv Bioresour 2(2):66–71Google Scholar
  35. Gapare W, Conaty W, Zhu QH et al (2017) Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica 213(3):66CrossRefGoogle Scholar
  36. Gill MS, Bajaj YPS (1984) Interspecific hybridization in the genus Gossypium through embryo culture. Euphytica 33(2):305–311CrossRefGoogle Scholar
  37. Guo BS, Liu SE, Wang ZX et al (2010) Breeding of high yield, high quality three lines hybrid cotton variety Ji-FRH3018 [J]. J Hebei Agric Sci 7:025Google Scholar
  38. Guo X, Guo Y, Ma J et al (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol 55(8):759–774CrossRefGoogle Scholar
  39. Gutierrez AP, Ponti L, Herren HR et al (2015) Deconstructing Indian cotton: weather, yields, and suicides. Environ Sci Eur 27(1):1–17CrossRefGoogle Scholar
  40. Huang C, Nie X, Shen C et al (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high density SNPs. Plant Biotechnol J 15(11):1374–1386CrossRefPubMedPubMedCentralGoogle Scholar
  41. Iqbal SRM, Chaudhry MB, Aslam M, Bandesha AA (1994) Development of a high yielding cotton mutant, NIAB-92 through the use of induced mutations. Pak J Bot 26:99–104Google Scholar
  42. Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475CrossRefPubMedPubMedCentralGoogle Scholar
  43. Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94(4–5):349–360CrossRefGoogle Scholar
  44. Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133(6):679–701CrossRefGoogle Scholar
  45. Jin S, Zhang X, Nie Y et al (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50(4):519–524CrossRefGoogle Scholar
  46. Junqi QS, Yingjun ZBH, Xinlian S (1995) Studies on the interspecific hybrid of Gossypium hirsutum Cultivar 86-1× G. armourianum and its use in breeding [J]. Acta Agron Sin 5:013Google Scholar
  47. Kakani VG, Reddy KR, Koti S et al (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96(1):59–67CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kalbande BB, Patil AS (2016) Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum). J Genet Eng Biotechnol 14(1):9–18CrossRefPubMedPubMedCentralGoogle Scholar
  49. Karthikeyan P, Ramya K, Kannan N et al (2015) Genetic analysis in cotton (Gossypium hirsutum L.) for mechanical harvesting characters. Proceeding on Proceedings of Future Technologies: Indian Cotton in the Next Decade December 17–19, 2015 at Acharya Nagarjuna University, Guntur - 522 510, India, pp 264–270Google Scholar
  50. Khan AI, Khan IA, Sadaqat HA (2008) Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak J Bot 40(5):2053–2058Google Scholar
  51. Kohel RJ (1985) Genetic analysis of fiber color variants in cotton. Crop Sci 25:793–797CrossRefGoogle Scholar
  52. Kuraparthy V, Bowman DT (2013) Gains in breeding upland cotton for fiber quality. J Cotton Sci 17:157–162Google Scholar
  53. Li L, Zhu Y, Jin S, Zhang X (2014) Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera. Acta Physiol Plant 36(10):2717–2727CrossRefGoogle Scholar
  54. Li C, Unver T, Zhang B (2017a) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L.). Sci Rep 7:43902.  https://doi.org/10.1038/srep43902CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li T, Ma X, Li N et al (2017b) Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J 15(12):1520–1532CrossRefPubMedPubMedCentralGoogle Scholar
  56. Liang C, Sun B, Meng Z et al (2017) Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnol J 15(12):1622–1629CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lian-gen FU (2011) Preliminary report of trial planting of hybrid cotton Tongza411 in Lanxi city and its cultivation technique. Hortic Seed 3:121–129Google Scholar
  58. Liu YD, Yin ZJ, Yu JW et al (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56(2):237–246CrossRefGoogle Scholar
  59. Loison R, Audebert A, Chopart JL et al (2017a) Sixty years of breeding in Cameroon improved fibre but not seed cotton yield. Exp Agric 53(2):202–209CrossRefGoogle Scholar
  60. Loison R, Audebert A, Debaeke P et al (2017b) Designing cotton ideotypes for the future: reducing risk of crop failure for low input rainfed conditions in Northern Cameroon. Eur J Agron 90:162–173CrossRefGoogle Scholar
  61. Long L, Guo DD, Gao W et al (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85.  https://doi.org/10.1186/s13007-018-0353-0CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mehetre SS (2010) Wild Gossypium anomalum:a unique source of fibre fineness and strength. Curr Sci 7:58–71Google Scholar
  63. Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa) – a step towards genotype-independent regeneration. Plant Cell Tissue Organ Cult 73(1):21–35CrossRefGoogle Scholar
  64. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plant 15(3):473–497CrossRefGoogle Scholar
  65. Muthusamy A, Jayabalan N (2011) In vitro induction of mutation in cotton (Gossypium hirsutum L.) and isolation of mutants with improved yield and fiber characters. Acta Physiol Plant 33(5):1793–1801CrossRefGoogle Scholar
  66. Muthusamy A, Jayabalan N (2014) Radiation and chemical mutagen induced somaclonal variations through in vitro organogenesis of cotton (Gossypium hirsutum L.). Int J Radiat Biol 90(12):1229–1239CrossRefGoogle Scholar
  67. Muthusamy A, Vasanth K, Jayabalan N (2005) Induced high yielding mutants in cotton (Gossypium hirsutum L.). Mutat Breed News Lett 1:6–8Google Scholar
  68. Naqvi RZ, Asif M, Saeed M et al (2017) Development of a triple gene Cry1Ac-Cry2Ab-EPSPSconstruct and its expression in Nicotiana benthamiana for insect resistance and herbicide tolerance in plants. Front Plant Sci 8:55.  https://doi.org/10.3389/fpls.2017.00055CrossRefPubMedPubMedCentralGoogle Scholar
  69. Naranjo SE (2010) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59(11):5842–5851CrossRefGoogle Scholar
  70. Nazeer W, Tipu AL, Ahmad S et al (2014) Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypiumarboreum and Gossypiumhirsutum. PLoS One 9(11):e111861CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ni M, Ma W, Wang et al (2017) Next generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15(9):1204–1213CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pang C, Du X, Ma Z (2006) Evaluation of the introgressed lines and screening for elite germplasm in Gossypium. Chin Sci Bull 51(3):304–312CrossRefGoogle Scholar
  73. Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427CrossRefGoogle Scholar
  74. Pathi KM, Tuteja N (2013) High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv Narashima) by using embryo apex. Plant Signal Behav 8(1):e22763CrossRefGoogle Scholar
  75. Pauli D, White JW, Andrade-Sanchez P et al (2017) Investigation of the influence of leaf thickness on canopy reflectance and physiological traits in upland and pima cotton populations. Front Plant Sci 8:1405CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pettigrew WT (2008) The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci 48(1):278–285CrossRefGoogle Scholar
  77. Qiao F (2015) Fifteen years of Bt cotton in China: the economic impact and its dynamics. World Dev 70:177–185CrossRefGoogle Scholar
  78. Rajasekaran K, Grula JW, Anderson DM (1996) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119(1–2):115–124CrossRefGoogle Scholar
  79. Rauf S, Rahman H (2005) A study of in vitro regeneration in relation to doses of growth regulators in hybrids of upland cotton. Plant Cell Tissue Organ Cult 83(2):209–215CrossRefGoogle Scholar
  80. Rauf S, Khan AA, Teixeria daSilva JA, Naveed A (2010) Consequences of plant breeding on genetic diversity. Int J Pl Breed 4(1):1–21CrossRefGoogle Scholar
  81. Rauf S, Al-Khayri JM, Zaharieva M et al (2016) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 397–445CrossRefGoogle Scholar
  82. Rehman L, Su X, Li X et al (2018) FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae. Curr Genet 64(3):645–659CrossRefGoogle Scholar
  83. Renfroe MH, Hartwig RC, Smith RH (2001) Isolation and fusion of cotton protoplasts. Va J Sci 52:57–65Google Scholar
  84. Roberts RK, English BC, Larson JA et al (2002) Precision farming by cotton producers in six southern states: results from the 2001 southern precision farming survey. University of Tennessee Agricultural Experiment Station, Department of Agricultural Economics, Research Series, 03–02Google Scholar
  85. Saha S, Wu J, Jenkins JN et al (2010) Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor Appl Genet 120(6):1193–1205CrossRefGoogle Scholar
  86. Satyavathi VV, Prasad V, Lakshmi BG, Sita GL (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162(2):215–223CrossRefGoogle Scholar
  87. Sekloka E, Lancon J, Goze E et al (2008) Breeding new cotton varieties to fit the diversity of cropping conditions in Africa: effect of plant architecture, earliness and effective flowering time on late-planted cotton productivity. Exp Agric 44(2):197–207CrossRefGoogle Scholar
  88. Shaheen T, Tabbasam N, Iqbal MA et al (2012) Cotton genetic resources. A review. Agron Sustain Dev 32:419–432CrossRefGoogle Scholar
  89. Shang L, Wang Y, Cai S et al (2016) Partial dominance, overdominance, epistasis and QTL by environment interactions contribute to heterosis in two upland cotton hybrids. G3: Genes Genomes Genet 6(3):499–507CrossRefGoogle Scholar
  90. Singh RP, Prasad PV, Sunita K et al (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 93:313–385CrossRefGoogle Scholar
  91. Strickland SG (1998) U.S. Patent No. 5,846,797. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  92. Su J, Li L, Zhang C et al (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131(6):1299–1314CrossRefGoogle Scholar
  93. Sun Y, Zhang X, Nie Y et al (2004) Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theor Appl Genet 109(3):472–479CrossRefGoogle Scholar
  94. Sun Y, Zhang X, Nie Y, Guo X (2005) Production of fertile somatic hybrids of Gossypium hirsutum+ G. bickii and G. hirsutum+ G. stockii via protoplast fusion. Plant Cell Tissue Organ Cult 83(3):303–310CrossRefGoogle Scholar
  95. Sun Y, Nie Y, Guo X et al (2006) Somatic hybrids between Gossypium hirsutum L.(4×) and G. davidsonii Kellog (2×) produced by protoplast fusion. Euphytica 151(3):393–400CrossRefGoogle Scholar
  96. Taggar GK, Arora R (2017) Insect biotypes and host plant resistance. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 387–421CrossRefGoogle Scholar
  97. Tahir MS, Noor UIK (2011) Development of an interspecific hybrid (Triploid) by crossing Gossypium hirsutum and G. arboreum. Cytologia 76(2):193–199CrossRefGoogle Scholar
  98. Tian X, Ruan J-X, Huang J-Q et al (2018) Characterization of gossypol biosynthetic pathway. PNAS 115(23):E5410–E5418.  https://doi.org/10.1073/pnas.1805085115CrossRefPubMedGoogle Scholar
  99. Tiwari RS, Picchioni GA, Steiner RL et al (2013) Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica 194:1–11CrossRefGoogle Scholar
  100. Tong XH, Daud MK, Zhu SJ (2010) Selection and characterization of a novel glyphosate-tolerant upland cotton (Gossypium hirsutum L.) mutant (R1098). Plant Breed 129(2):192–196CrossRefGoogle Scholar
  101. Torbett JC, Roberts RK, Larson JA, English BC (2007) Perceived importance of precision farming technologies in improving phosphorus and potassium efficiency in cotton production. Precis Agric 8(3):127–137CrossRefGoogle Scholar
  102. Traxler G, Godoy-Avila S (2004) Transgenic cotton in Mexico. AgBio Forum 7(1–2):57–62. http://www.agbioforum.orgGoogle Scholar
  103. Traxler G, Godoy-Avila S, Falck-Zepeda J, Espinoza-Arellano J (2001) Transgenic cotton in Mexico: economic and environmental impacts. Available atfile:///C:/Users/HP/Downloads/Transgenic_Cotton_in_Mexico_Economic_and_Environme.pdfGoogle Scholar
  104. Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6(3):231–234CrossRefGoogle Scholar
  105. Tuteja OP, Banga M (2011) Effects of cytoplasm on heterosis for agronomic traits in upland cotton (Gossypium hirsutum). Indian J Agric Sci 81(11):1001–1007Google Scholar
  106. Ullah I, Ashraf M, Zafar Y (2008) Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): leaf gas exchange and productivity. Flora 203(2):105–115CrossRefGoogle Scholar
  107. Ulloa M, Stewart JM, Garcia EA et al (2006) Cotton genetic resources in the western states of Mexico: in situ conservation status and germplasm collection for ex situ preservation. Genet Resour Crop Evol 53(4):653–668CrossRefGoogle Scholar
  108. Ur Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crop Res 85(2–3):149–158CrossRefGoogle Scholar
  109. Wang JE, Sun YQ, Zhu SJ (2007) Advances in cotton protoplast culture and somatic hybridization [J]. Cotton Sci 2:11–21Google Scholar
  110. Wang F, Gong Y, Zhang C et al (2011) Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181(1):41–53CrossRefGoogle Scholar
  111. Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefGoogle Scholar
  112. Wang L, Liu H, Li X et al (2014) Genetic mapping of fiber color genes on two brown cotton cultivars in Xinjiang. Springerplus 3(1):480CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wang Y, Liang C, Wu S et al (2016) Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Mol Plant 9(10):1436–1439CrossRefGoogle Scholar
  114. Wang P, Zhang J, Sun L et al (2018) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16(1):137–150CrossRefGoogle Scholar
  115. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249.  https://doi.org/10.1023/A:1006392424384CrossRefPubMedGoogle Scholar
  116. Wenfang G, Gangqiang Li, Wand NYC et al (2017) Transgenic cotton against Verticillium wilt by over expression of hen egg white lysozyme. SINO-Pak international conference on innovation in cotton breeding & biotechnology, 22–24 November, Multan, Pakistan, pp 4Google Scholar
  117. Wu KM, Lu YH, Feng HQ et al (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321(5896):1676–1678CrossRefGoogle Scholar
  118. Wu Y, Chen D, Zhu S et al (2017) A new synthetic hybrid (A1D5) between Gossypium herbaceum and G. raimondii and its morphological, cytogenetic, molecular characterization. PLoS One 12(2):e0169833.  https://doi.org/10.1371/journal.pone.0169833CrossRefPubMedPubMedCentralGoogle Scholar
  119. Yang C, Guo W, Li G et al (2017) Transgenic cotton against aphids by overexpression of snowdrop and amaranth lectin. SINO-Pak international conference on innovation in cotton breeding & biotechnology, 22–24 November, Multan, PakistanGoogle Scholar
  120. Yu XS, Chu BJ, Liu RE et al (2012) Characteristics of fertile somatic hybrids of G. hirsutum L. and G. trilobum generated via protoplast fusion. Theor Appl Genet 125(7):1503–1516CrossRefGoogle Scholar
  121. Zeng B, Xu X, Zhou S et al (2012) Effects of temperature and light on photosynthetic heterosis of an upland cotton hybrid cultivar. Crop Sci 52(1):282–291CrossRefGoogle Scholar
  122. Zhang B (2013) Transgenic cotton: from biotransformation methods to agricultural application. Methods Mol Biol 958:3–15.  https://doi.org/10.1007/978-1-62703-212-4_1CrossRefPubMedGoogle Scholar
  123. Zhang J, Percy RG, McCarty JC (2014) Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198(1):1–12CrossRefGoogle Scholar
  124. Zhang F, Li S, Yang S et al (2015) Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol 87:47–67CrossRefGoogle Scholar
  125. Zhang J, Wu M, Yu J et al (2016) Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS One 11(1):e0143646CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zhenglan L, Ruqin J, Wennan Z et al (2002) Creation of the technique of interspecific hybridization for breeding in cotton. Sci China Ser C Life Sci 45:331–336CrossRefGoogle Scholar
  127. Zhu W, Liu K, Wang XD (2008) Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica 164:283.  https://doi.org/10.1007/s10681-008-9732-3CrossRefGoogle Scholar
  128. Zhu X, Zhang Y, Guo W, Zhang TZ (2011) Relationships between differential gene expression and heterosis in cotton hybrids developed from the foundation parent CRI-12 and its pedigree-derived lines. Plant Sci 180:221–227CrossRefGoogle Scholar
  129. Zhu T, Liang C, Meng Z et al (2017a) CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol 17(1):101CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zhu T, Liang C, Meng Z et al (2017b) Cotton FGD (cotton function genomics database) and two case studies in cotton genomics research. SINO-Pak international conference on innovation in cotton breeding & biotechnology, 22–24 November, Multan, PakistanGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saeed Rauf
    • 1
  • Muhammad Shehzad
    • 1
  • Jameel M. Al-Khayri
    • 2
  • Hafiz Muhammad Imran
    • 3
  • Ijaz Rasool Noorka
    • 1
  1. 1.Department of Plant Breeding and Genetics, College of AgricultureUniversity of SargodhaSargodhaPakistan
  2. 2.Department of Agricultural BiotechnologyKing Faisal UniversityAl-HassaSaudi Arabia
  3. 3.Central Cotton Research InstituteMultanPakistan

Personalised recommendations