Vanilla (Vanilla spp.) Breeding

  • Alan H. ChambersEmail author


Vanilla planifolia is the botanical source of vanilla extract, but has not generally benefited from strategic plant breeding. V. planifolia was cultivated in pre-Columbian Mesoamerica for its desirable aroma, and spread globally by vegetative cuttings starting in the 1500s. In 1837 a method to artificially pollinate Vanilla flowers enabled commercial production outside the native range. Today, Madagascar leads Vanilla production with significant contributions from other nations. The mass propagation of a few foundational clones has resulted in a global industry reliant on a very narrow germplasm base with threats from multiple biotic and abiotic stresses. Further, the lack of molecular, genomic and definitive phenotypic characterization inhibits improvement within this genus. The establishment of modern Vanilla breeding programs could leverage increasingly accessible technologies including advances in genomics and biotechnology to rapidly improve this species for high priority traits like disease resistance, total bean yield, pod uniformity, vigor, non-splitting pods, flower longevity, extract quality and flowers that are able to self-pollinate without manual intervention. While plant breeding is generally a long-term prospect, the potential benefits are justified by the increasing demand for premium ingredients like natural vanilla extract. In the future, genetic improvement of this species could result in more resilient and higher-quality cultivars that reduce price volatility, support growers, improve sustainability and excite modern consumers.


Breeding Genomics Vanilla extract Vanilla planifolia Vanilla pompona Vanilla x tahitensis 


  1. Adams JB, Brown HM (2007) Discoloration in raw and processed fruits and vegetables. Crit Rev Food Sci Nutr 47:319–333. Scholar
  2. Afgan E, Baker D, Batut B et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Report 9:229–241CrossRefGoogle Scholar
  4. Belanger FC, Havkin-Frenkel D (2011) Molecular analysis of a Vanilla hybrid cultivated in Costa Rica. In: Handbook of Vanilla science and technology 2nd ed. Wiley, Singapore, pp 256–265Google Scholar
  5. Berenstein N (2016) Making a global sensation: Vanilla flavor, synthetic chemistry, and the meanings of purity. Hist Sci 54:399–424. Scholar
  6. Besse P, Da Silva D, Bory S et al (2004) RAPD genetic diversity in cultivated Vanilla: Vanilla planifolia, and relationships with V. tahitensis and V. pompona. Plant Sci 167:379–385. Scholar
  7. Bianchessi P (2012) Vanilla handbook. Venui Vanilla, VanuatuGoogle Scholar
  8. Bory S, Catrice O, Brown S et al (2008a) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51:816–826CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bory S, Da Silva D, Risterucci A-M et al (2008b) Development of microsatellite markers in cultivated Vanilla: polymorphism and transferability to other Vanilla species. Sci Hortic 115:420–425CrossRefGoogle Scholar
  10. Bory S, Grisoni M, Duval M, Besse P (2008c) Biodiversity and preservation of Vanilla: present state of knowledge. Genet Resour Crop Evol 55:551–571CrossRefGoogle Scholar
  11. Bory S, Lubinsky P, Risterucci AM et al (2008d) Patterns of introduction and diversification of Vanilla planifolia (Orchidaceae) in Reunion Island (Indian Ocean). Am J Bot 95:805–815CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bouetard A, Lefeuvre P, Gigant R et al (2010) Evidence of transoceanic dispersion of the genus Vanilla based on plastid DNA phylogenetic analysis. Mol Phylogenet Evol 55:621–630. Scholar
  13. Bouriquet G, Boiteau P (1947) Sur la germination des graines de vanillier. Bull l’Acad Malgache 25:150–164Google Scholar
  14. Brown SC, Bourge M, Maunoury N et al (2017) DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome Biol Evol 9:1051–1071CrossRefGoogle Scholar
  15. Bruman H (1948) The culture history of Mexican Vanilla. Hisp Am Hist Rev 28:360–376CrossRefGoogle Scholar
  16. Brunschwig C, Rochard S, Pierrat A et al (2016) Volatile composition and sensory properties of Vanilla x tahitensis bring new insights for Vanilla quality control. J Sci Food Agric 96:848–858. Scholar
  17. Brunschwig C, Collard F, Lepers-Andrzejewski S, Raharivelomanana P (2017) Tahitian Vanilla (Vanilla× tahitensis): a Vanilla species with unique features. In: El-Shemy H (ed) Active ingredients from aromatic and medicinal plants. Intech, Rijeka, pp 29–47Google Scholar
  18. Cameron KM (2004) Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 31:1157–1180. Scholar
  19. Cameron KM (2009) On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae). Ann Bot 104:377–385CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cameron KM, Carmen Molina M (2006) Photosystem II gene sequences of psbB and psbC clarify the phylogenetic position of Vanilla (Vanilloideae, Orchidaceae). Cladistics 22:239–248CrossRefGoogle Scholar
  21. Chambers AH (2018) Establishing Vanilla production and a Vanilla breeding program in the southern United States. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 165–180CrossRefGoogle Scholar
  22. Childers NF (1948) Vanilla culture in Puerto Rico, vol 28. US Department of Agriculture, Washington, DCGoogle Scholar
  23. Conter FE (1903) Vanilla cultivation in Hawaii. Press Bulletin, Hawaii Agricultural Experiment Station, no 6. Hawaii Agricultural Experiment Station, HonoluluGoogle Scholar
  24. Correll DS (1953) Vanilla – its botany, history, cultivation and economic import. Econ Bot 7:291–358CrossRefGoogle Scholar
  25. Delassus M (1963) La lutte contre la fusariose du vanillier par les méthodes génétiques. L’Agronomie Tropicale Série 2. Agron Gén Etud Tech 18:245–246Google Scholar
  26. Dequaire J (1976) L’amélioration du vanillier à Madagascar. J Agric Trad Bot Appliq 23:139–158Google Scholar
  27. Divakaran M, Babu KN, Ravindran PN, Peter KV (2006) Interspecific hybridization in Vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci Hortic 108:414–422CrossRefGoogle Scholar
  28. Divakaran M, Pillai GS, Babu KN, Peter KV (2008) Isolation and fusion of protoplasts in Vanilla species. Curr Sci 94:115–120Google Scholar
  29. Divakaran M, Nirmal Babu K, Grisoni M (2010) Biotechnological applications in Vanilla. Vanilla. CRC Press, Boca Raton, pp 51–73Google Scholar
  30. Duval M, Bory S, Andrzejewski S et al (2006) Diversité génétique des vanilliers dans leurs zones de dispersion secondaire. Les Actes BRG:181–196Google Scholar
  31. FAO (2009) Vanilla: post-harvest operationsGoogle Scholar
  32. Fock-Bastide I, Palama TL, Bory S et al (2014) Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis. Plant Physiol Biochem 74:304–314CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fouche JG, Jouve L (1999) Vanilla planifolia: history, botany and culture in Reunion island. Agronomie 19:689–703. Scholar
  34. Gallage NJ, Møller BL (2015) Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the Vanilla orchid. Mol Plant 8:40–57CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gallage NJ, Møller BL (2018) Vanilla: the most popular flavour. In: Biotechnology of natural products. Springer, Cham, pp 3–24CrossRefGoogle Scholar
  36. Gantait S, Kundu S (2017) In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39:1–19CrossRefGoogle Scholar
  37. García RAM (2018) In vitro propagation of Vanilla. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 181–190CrossRefGoogle Scholar
  38. Gigant RL et al (2016) Microsatellite markers confirm self-pollination and autogamy in wild populations of Vanilla mexicana Mill. (syn. V. inodora)(Orchidaceae) in the island of Guadeloupe. In: Abdurakhmonov I (ed) Microsatellite markers. Intech, Rijeka, pp 73–93Google Scholar
  39. Goff SA, Vaughn M, McKay S et al (2011) The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 2:34CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gretzinger N, Dean D (2018) Vanilla production in the context of culture, economics, and ecology of Belize. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 50–68Google Scholar
  41. Grisoni M, Dijoux JB (2017) Vanilla variety named ‘Handa’. Google PatentsGoogle Scholar
  42. Hernández H, Lubinsky P (2010) Cultivation systems Vanilla. CRC Press Taylor & Francis, Boca Raton, pp 75–95Google Scholar
  43. Hu Y, Resende M, Bombarely A et al (2019) Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and genotyping-by-sequencing. Sci Rep 9(1):3416. Scholar
  44. Jose V (2005) Studies on genetic variability in open pollinated progenies of Vanilla. University of CalicutGoogle Scholar
  45. Joubes J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kausch AP, Horner HT (1984) Increased nuclear-DNA content in raphide crystal idioblasts during development in Vanilla planifolia L. (Orchidaceae). Eur J Cell Biol 33:7–12PubMedPubMedCentralGoogle Scholar
  47. Knudson L (1950) Germination of seeds of Vanilla. Am J Bot 37:241–247CrossRefGoogle Scholar
  48. Koyyappurath S, Conejero G, Dijoux J et al (2015) Differential rResponses of Vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-Vanillae. Front Plant Sci 6:1125. Scholar
  49. Leitch IJ, Kahandawala I, Suda J et al (2009) Genome size diversity in orchids: consequences and evolution. Ann Bot 104:469–481CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lepers-Andrzejewski S, Siljak-Yakovlev S, Brown SC et al (2011) Diversity and dynamics of plant genome size: an example of polysomaty from a cytogenetic study of Tahitian vanilla (Vanilla× tahitensis, Orchidaceae). Am J Bot 98:986–997CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lepers-Andrzejewski S, Causse S, Caromel B et al (2012) Genetic linkage map and diversity analysis of Tahitian Vanilla (Vanilla× tahitensis, Orchidaceae). Crop Sci 52:795–806Google Scholar
  52. Lubinsky P, Bory S, Hernandez J et al (2008a) Origins and dispersal of cultivated vanilla (Vanilla planifolia jacks. [Orchidaceae]). Econ Bot 62:127–138CrossRefGoogle Scholar
  53. Lubinsky P, Cameron KM, Molina MC et al (2008b) Neotropical roots of a Polynesian spice: the hybrid origin of Tahitian Vanilla, Vanilla tahitensis (Orchidaceae). Am J Bot 95:1040–1047CrossRefPubMedPubMedCentralGoogle Scholar
  54. Malabadi RB, Nataraja K (2007) Genetic transformation of Vanilla planifolia by Agrobacterium tumefaciens using shoot tip sections. Res J Bot 2:86–94CrossRefGoogle Scholar
  55. Martinez RC, Engleman EM (1993) Caracterización de dos tipos de Vanilla planifolia. Acta Bot Mex 25:49–59CrossRefGoogle Scholar
  56. Maruenda H, Vico MD, Householder JE et al (2013) Exploration of Vanilla pompona from the Peruvian Amazon as a potential source of vanilla essence: quantification of phenolics by HPLC-DAD. Food Chem 138:161–167. Scholar
  57. Mathew KM, Lakshmanan R, Rao YS et al (2012) Isolation and culture of protoplasts of Vanilla planifolia Andrews and Vanilla wightiana Lindl., a wild relative. Crop Improv 39:31–35Google Scholar
  58. Menchaca G, Rebeca A, Ramos P et al (2011) In vitro germination of Vanilla planifolia and V. pompona hybrids. Rev Colomb Biotecnol 13:80–84Google Scholar
  59. Merchant N, Lyons E, Goff S et al (2016) The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol 14:e1002342CrossRefPubMedPubMedCentralGoogle Scholar
  60. Minoo D, Jayakumar V, Veena S et al (2008) Genetic variations and interrelationships in Vanilla planifolia and few related species as expressed by RAPD polymorphism. Genet Resour Crop Evol 55:459–470CrossRefGoogle Scholar
  61. Montero-Carmona W, Jiménez VM (2015) Vanilla protoplasts: isolation and electrofusion. In: Rakshit A (ed) Emerging innovations in agriculture: from theory to practice. Athens IER, Athens, pp 15–29Google Scholar
  62. Nielsen LR (2000) Natural hybridization between Vanilla claviculata (W. Wright) Sw. and V. barbellata Rchb. f. (Orchidaceae): genetic, morphological, and pollination experimental data. Bot J Linn Soc 133:285–302CrossRefGoogle Scholar
  63. Nielsen LR, Siegismund HR (1999) Interspecific differentiation and hybridization in Vanilla species (Orchidaceae). Heredity 83:560–567CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nissar VM, Hrideek T, Kuruvilla K et al (2006) Studies on pollination, inter specific hybridization and fruit development in Vanilla. J Plant Crop 34:167Google Scholar
  65. Odoux E (2010) Vanilla curing. In: Odoux E, Grisoni M (eds) Vanilla. CRC Press, Boca Raton, pp 173–188CrossRefGoogle Scholar
  66. Pemberton RW, Wheeler GS (2006) Orchid bees don’t need orchids: evidence from the naturalization of an orchid bee in Florida. Ecology 87:1995–2001CrossRefPubMedPubMedCentralGoogle Scholar
  67. Perez VB, Andreu LGI, Manzano EAE et al (2016) Molecular and microclimatic characterization of two plantations of Vanilla planifolia (Jacks ex Andrews) with divergent backgrounds of premature fruit abortion. Sci Hortic 212:240–250. Scholar
  68. Quirós EV (2010) Vanilla production in Costa Rica. In: Handbook of Vanilla science and technology, 2nd edn. Wiley, Singapore, pp 40–49CrossRefGoogle Scholar
  69. Ramirez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tissue Org Cult 123:657–664CrossRefGoogle Scholar
  70. Ramírez-Mosqueda M, Iglesias-Andreu L, Silva J et al (2019) In vitro selection of Vanilla plants resistant to Fusarium oxysporum f. sp. vanillae. Acta Physiol Plant 41:40. Scholar
  71. Ramos-Castellá AL, Iglesias-Andreu LG, Martínez-Castillo J et al (2017) Evaluation of molecular variability in germplasm of vanilla (Vanilla planifolia G. Jackson in Andrews) in Southeast Mexico: implications for genetic improvement and conservation. Plant Genet Resour 15:310–320CrossRefGoogle Scholar
  72. Rao X, Krom N, Tang Y et al (2014) A deep transcriptomic analysis of pod development in the Vanilla orchid (Vanilla planifolia). BMC Genomics 15:964. Scholar
  73. Retheesh S, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of Vanilla (Vanilla planifolia Andrews) using Agrobacterium tumefaciens. J Plant Biochem Biotechnol 20:262CrossRefGoogle Scholar
  74. Roux-Cuvelier M, Grisoni M (2010) Conservation and movement of Vanilla germplasm. In: Odoux E, Grisoni M (eds) Vanilla, Singapore, pp 31–41Google Scholar
  75. Sasikumar B (2010) Vanilla breeding – a review. Agric Rev 31:139–144Google Scholar
  76. Schlüter PM, Arenas MAS, Harris SA (2007) Genetic variation in Vanilla planifolia (Orchidaceae). Econ Bot 61:328CrossRefGoogle Scholar
  77. Skov C, Wiley J (2005) Establishment of the neotropical orchid bee Euglossa viridissima (Hymenoptera: Apidae) in Florida. Fla Entomol 88:225–227.[0225:Eotnob]2.0.Co;2CrossRefGoogle Scholar
  78. Soto Arenas MA, Dressler RL (2010) A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their ITS region of the nuclear ribosomal DNA. J Orchidol 9:285–354Google Scholar
  79. Sreedhar R, Venkatachalam L, Roohie K, Bhagyalakshmi N (2007) Molecular analyses of Vanilla planifolia cultivated in India using RAPD and ISSR markers. Orchid Sci Biotech 1:29–33Google Scholar
  80. Theis T, Jimenez FA (1957) A Vanilla hybrid resistant to Fusarium root rot. Phytopathology 47:579–581Google Scholar
  81. Travnicek P, Ponert J, Urfus T (2015) Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytom A 87:958–966. Scholar
  82. Verma PC, Chakrabarty D, Jena SN et al (2009) The extent of genetic diversity among Vanilla species: comparative results for RAPD and ISSR. Ind Crop Prod 29:581–589CrossRefGoogle Scholar
  83. Villanueva-Viramontes S, Hernández-Apolinar M, Fernández-Concha GC et al (2017) Wild Vanilla planifolia and its relatives in the Mexican Yucatan Peninsula: systematic analyses with ISSR and ITS. Bot Sci 95:169–187CrossRefGoogle Scholar
  84. Yang HL, Barros-Rios J, Kourteva G et al (2017) A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. Phytochemistry 139:33–46CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tropical Research and Education Center, Horticultural Sciences DepartmentUniversity of FloridaHomesteadUSA

Personalised recommendations