Safflower (Carthamus tinctorius L.) Breeding

  • Pooran GolkarEmail author
  • Somayeh Karimi


As an oilseed source, safflower (Carthamus tinctorius L.) also contains natural dyes known for their pharmaceutical properties in the treatment of chronic disorders. The production of this herbaceous plant originated in China from which it was dispersed to the Mediterranean countries. The plant is recognized for its use in herbal medicine, birdseed, animal feed, protein-containing ingredients and cooking oil (full of linoleic and oleic fatty acids). Of the linoleic-acid content of safflower, nearly 75%, is vital for a healthy human diet. Due to its adaptability to simultaneously yield oleic and linoleic oils, it is among the substitutes for the common agricultural products raised in marginal farming lands all over the world. No consensus so far has been reached in studies done on safflower. However, it seems necessary to exploit the potentiality of this underutilized plant. The detection and development of novel safflower ideotypes will enhance the suitability of this plant to various prevailing conditions, thereby enabling it to be incorporated into different intercropping practices. Classic genetic studies have an important role in making an educated guess concerning the action of genes and heritability of various agronomic and pheno-morphologic characteristics. Recently, biotechnological developments have contributed to safflower breeding. These practices, however, have not been well supported molecularly. The present chapter articulates different aspects of safflower breeding including conventional breeding methodologies, agronomic performance and biotechnological tools for improving safflower cultivation.


In vitro Biotechnology Gene action Genetic marker Flower Hybrid Oil seed 


  1. Al-Snafi AE (2015) The chemical constituents and pharmacological importance of Carthamus tinctorius – an overview. J Pharm Biol 5(3):143–166Google Scholar
  2. Ambreen H, Kumar S, Variath MT et al (2015) Development of genomic microsatellite markers in Carthamus tinctorius L. (safflower) using next generation sequencing and assessment of their cross-species transferability and utility for diversity analysis. PLoS One 10(8):e0135443CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163:21–30CrossRefGoogle Scholar
  4. Anjani K (2008) Development of an effective cytoplasmic genetic male sterility system through conventional breeding in safflower in India. In: Proceeding of the 7th international safflower conference, Wagga Wagga, Australia, p 3Google Scholar
  5. Ashri A (1975) Evaluation of the germ plasm collection of safflower, Carthamus tinctorius L. V. distribution and regional divergence for morphological characters. Euphytica 24(3):651–659CrossRefGoogle Scholar
  6. Ashri A, Knowles PF (1960) Cytogenetics of safflower (Carthamus L.) species and their hybrids. Agron J 52(1):11–17CrossRefGoogle Scholar
  7. Bassiri A (1977) Identification and polymorphism of cultivars and wild ecotypes of safflower based on isozyme patterns. Euphytica 26(3):709–719CrossRefGoogle Scholar
  8. Baydar H, Gökmen O, Friedt W (2003) Hybrid seed production in safflower (Carthamus tinctorius) following the induction of male sterility by gibberellic acid. Plant Breed 122(5):459–461CrossRefGoogle Scholar
  9. Belide S, Hac L, Singh SP et al (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12.
  10. Bowers JE, Pearl SA, Burke JM (2016) Genetic mapping of millions of SNPs in safflower (Carthamus tinctorius L.) via whole-genome resequencing. G3: Genes, Genomes, Genetics 6(7):2203–2211CrossRefGoogle Scholar
  11. Bowles VG, Davis C, Mayerhofer R et al (2010) A phylogenetic investigation of Carthamus combining sequence and microsatellite data. Plant Syst Evol 287:85–97CrossRefGoogle Scholar
  12. Bradley VL, Guenthner RL, Johnson RC, Hannan RM (1999) Evaluation of safflower germplasm for ornamental use. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 433–435Google Scholar
  13. Camaş N, Esendal E (2006) Estimates of broad-sense heritability for seed yield and yield components of safflower (Carthamus tinctorius L.). Hereditas 143:55–57CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cao S, Zhou X-R, Wood CC, Green AG et al (2013) A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 13(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carlsson AS, Zhu L-H, Andersson M, Hofvander P (2014) Platform crops amenable to genetic engineering-a requirement for successful production of bio-industrial oils through genetic engineering. Biocatal Agric Biotechnol 3(1):58–64CrossRefGoogle Scholar
  16. Cervantes-Martínez J, Rey-Ponce M, Velázquez-Cágal M (2001) Evaluation of accessions from world collection of safflower for Alternaria incidence and seed oil content. In: Proceedings of the 5th international safflower conference, Williston, North Dakota and Sidney, MT, USA, pp 23–27Google Scholar
  17. Chapman MA, Chang J, Weisman D et al (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a near Eastern origin and five centers of diversity. Am J Bot 97:831–840CrossRefGoogle Scholar
  19. Claassen C (1950) Natural and controlled crossing in safflower, Carthamus tinctorius L. Agron J 42:381–384CrossRefGoogle Scholar
  20. Claassen CE (1952) Inheritance of sterility, flower color, spinelessness, attached pappus and rust resistance in safflower, Carthamus tinctorius. Bull Agric Exp Stat Nebraska No. 171Google Scholar
  21. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572CrossRefGoogle Scholar
  22. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  23. Dajue L, Mündel H-H (1996) Safflower, Carthamus tinctorius L, vol 7. Bioversity International, RomeGoogle Scholar
  24. Derakhshan E, Majidi M, Sharafi Y, Mirlohi A (2014) Discrimination and genetic diversity of cultivated and wild safflowers (Carthamus spp.) using EST-microsatellites markers. Biochem Syst Ecol 54:130–136CrossRefGoogle Scholar
  25. Deshmukh M, Patil B, Chopade P (1991) General evaluation of some selected lines of safflower (Carthamus tinctorius L.). Indian J Agric Res 25:181–188Google Scholar
  26. Dhumale D, Merat D, Deshmukh D (1998) Simplified triple test cross analysis in safflower (Carthamus tinctorius L.). Indian J Genet Plant Breed 58(3):323–326Google Scholar
  27. Dwiedi S, Upadhyaya H, Hegde D (2005) Development of core collection in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52:821–830CrossRefGoogle Scholar
  28. Ebert W, Knowles P (1966) Inheritance of pericarp types, sterility, and dwarfness in several safflower crosses. Crop Sci 6(6):579–582CrossRefGoogle Scholar
  29. Ebrahimi F, Majidi MM, Arzani A, Mohammadi-Nejad G (2017) Association analysis of molecular markers with traits under drought stress in safflower. Crop Pasture Sci 68(2):167–175CrossRefGoogle Scholar
  30. Elfadl E, Reinbrecht C, Frick C, Claupein W (2009) Optimization of nitrogen rate and seed density for safflower (Carthamus tinctorius L.) production under low-input farming conditions in temperate climate. Field Crop Res 114(1):2–13CrossRefGoogle Scholar
  31. Estilai A, Knowles P (1980) Aneuploids in safflower. Crop Sci 20(4):516–518CrossRefGoogle Scholar
  32. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, HarlowGoogle Scholar
  33. FAOSTAT (2016).
  34. Fernandez-Martinez J, Del Rio M, De Haro A (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69(1–2):115–122CrossRefGoogle Scholar
  35. Garcia-Moreno MJ, Fernandez-Martinez JM, Velasco L, Perez-Vich B (2011) Molecular tagging and candidate gene analysis of the high gamma tocopherol trait in safflower (Carthamus tinctorius L.). Mol Breed 28(3):367–379CrossRefGoogle Scholar
  36. Golkar P (2010) Genetic analysis of quantitative and qualitative characters of oil, seed yield components in safflower via diallel crosses. Dissertation, Isfahan University of Technology, IsfahanGoogle Scholar
  37. Golkar P (2011) Genetic analysis of earliness and its components in safflower (Carthamus tinctorius L.). Afr J Agric Res 6(14):3264–3271Google Scholar
  38. Golkar P (2014) Breeding improvements in safflower (Carthamus tinctorius L.): a review. Aust J Crop Sci 8(7):1079–1085Google Scholar
  39. Golkar P, Arzani A, Rezaei A et al (2009) Genetic variation of leaf antioxidants and chlorophyll content in safflower. Afr J Agric Res 4(12):1475–1482Google Scholar
  40. Golkar P, Arzani A, Rezaei A (2010) Inheritance of flower colour and spinelessness in safflower (Carthamus tinctorius L.). J Genet 89(2):259–262CrossRefGoogle Scholar
  41. Golkar P, Arzani A, Rezaei AM (2011a) Genetic variation in safflower (Carthamus tinctorious L.) for seed quality-related traits and inter-simple sequence repeat (ISSR) markers. Int J Mol Sci 12:2664–2677CrossRefPubMedPubMedCentralGoogle Scholar
  42. Golkar P, Arzani A, Rezaei R (2011b) Genetic analysis of oil content and fatty acid composition in safflower (Carthamus tinctorius L.). J Am Oil Chem Soc 88(7):975–982CrossRefGoogle Scholar
  43. Golkar P, Arzani A, Rezaei A (2012) Genetic analysis of agronomic traits in safflower (Carthamus tinctorious L.). Not Bot Hortic Agrobo 40(1):276–281CrossRefGoogle Scholar
  44. Gupta SK (2015) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic, Cambridge MAGoogle Scholar
  45. Gupta R, Singh S (1988a) Diallel analysis for seed yield, oil content and other economic traits in safflower (Carthamus tinctorius L.). Genetika-Yugosl 20:161–173Google Scholar
  46. Gupta R, Singh S (1988b) Genetic analysis for earliness in safflower (Carthamus tinctorius L.). Genetika-Yugosl 20:219–227Google Scholar
  47. Hamdan YAS, Pérez-Vich B, Fernández-Martínez JM, Velasco L (2008) Inheritance of very high linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breed 127(5):507–509CrossRefGoogle Scholar
  48. Hamdan YAS, Pérez-Vich B, Fernández-Martínez JM, Velasco L (2009) Novel safflower germplasm with increased saturated fatty acid content. Crop Sci 49:127–132CrossRefGoogle Scholar
  49. Hamdan YAS, García-Moreno MJ, Redondo-Nevado J, Velasco L, Pérez-Vich B (2011) Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L.). Plant Breed 130(2):237–241Google Scholar
  50. Hamdan YAS, Garcia-Moreno MJ, Fernandez-Martinez JM, Velasco L, Perez-Vich B (2012) Mapping of major and modifying genes for high oleic acid content in safflower. Mol Breed 30:1279–1293Google Scholar
  51. Hamedi M (2014) In vitro callus induction and plant regeneration in Safflower (Carthamus tinctorius) and salt tolerance evaluation via in vitro condition. Dissertation, Isfahan University of TechnologyGoogle Scholar
  52. Hamedi M, Golkar P, Arzani A (2016) In vitro salt tolerance of safflower (Carthamus tinctorius L.) genotypes using different explants. Plant Tiss Cult Biotechnol 26(2):231–242CrossRefGoogle Scholar
  53. Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy, MadisonGoogle Scholar
  54. Heaton T, Knowles P (1980) Registration of UC-148 and UC-149 male-sterile safflower germplasm (Reg. Nos. GP 16 and GP 17). Crop Sci 20(4):554CrossRefGoogle Scholar
  55. Hill A (1989) Hybrid safflower breeding. In: Proceedings second international safflower conference, Hyderabad, India, pp 9–13Google Scholar
  56. Hussain MI, Lyra DA, Farooq M et al (2016) Salt and drought stresses in safflower: a review. Agron Sustain Dev 36(1):4CrossRefGoogle Scholar
  57. Jaradat A, Shahid M (2006) Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Genet Resour Crop Evol 53(2):225–244CrossRefGoogle Scholar
  58. Johnson RC, Bergman JW, Flynn CR (1999) Oil and meal characteristics of core and non-core safflower accessions from the USDA collection. Genet Resour Crop Evol 46(6):611–618CrossRefGoogle Scholar
  59. Johnson R, Ghorpade P, Bradley V (2001) Evaluation of the USDA core safflower collection for seven quantitative traits. In: Proceedings of the 5th international safflower conference, Williston, North Dakota and Sidney, Montana, USA, 2001. Safflower: a multipurpose species with unexploited potential and world adaptability, pp 149–152Google Scholar
  60. Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736CrossRefGoogle Scholar
  61. Joshi B, Nerkar Y, Jambhale N (1983) Induced male sterility in safflower. J Maharashtra Agric Univ 8:194–196Google Scholar
  62. Karimi S (2015) Study of physiological traits and microsatellite markers associated with salt tolerance in safflower (Carthamus tinctorius L.). Dissertation, Isfahan University of TechnologyGoogle Scholar
  63. Khan MA, Witzke-Ehbrecht S von, Maass BL, Becker HC (2009) Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genet Resour Crop Evol 56:19–30CrossRefGoogle Scholar
  64. Kizil S, Çakmak Ö, Kirici S, İnan M (2008) A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol Biotechnol Equip 22(4):947–953CrossRefGoogle Scholar
  65. Knowles PF (1969) Centers of plant diversity and conservation of crop germplasm: safflower. Econ Bot 23:324–329CrossRefGoogle Scholar
  66. Knowles PF (1989) Safflower. Oil crops of the world, their breeding and utilization. McGraw Hill, Inc., New YorkGoogle Scholar
  67. Knutzon D, Bleibaum J, Nelsen J, Kridi J (1992) Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol 100(4):1751–1759CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kotecha A (1979) Inheritance and association of six traits in safflower. Crop Sci 19(4):523–527CrossRefGoogle Scholar
  69. Kotecha A, Zimmerman L (1978) Inheritance of seed weight, pappus, and striped hull in safflower species. Crop Sci 18(6):999–1003CrossRefGoogle Scholar
  70. Kumar H, Pillai R, Singh R (1981) Cytogenetic studies in safflower. In: Proceedings of the 1st international safflower conference, Davis, CA, pp 126–136Google Scholar
  71. Lee GA, Sung JS, Lee SY et al (2014) Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol Ecol Resour 14(1):69–78CrossRefGoogle Scholar
  72. Li H, Dong Y, Sun Y et al (2011) Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Planta 233(3):611–619CrossRefGoogle Scholar
  73. Li H, Dong Y, Yang J et al (2012) De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PLoS One 7(2):e30987CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lijiao F, Meili G (2013) Progress of safflower (Carthamus tinctorius L.) regeneration through tissue culture. J Med Coll PLA 28(5):289–301CrossRefGoogle Scholar
  75. Lulin H, Xiao Y, Pei S et al (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One 7(6):e38653CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mandal A, Banerjee S (1997) Diallel analysis of yield and yield components in safflower [Carthamus tinctorius]. J Genet Breed 51:211–215Google Scholar
  77. Markley N, Nykiforuk C, Boothe J, Moloney M (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int 19(6):34–46Google Scholar
  78. Mayerhofer R, Archibald C, Bowles V, Good AG (2010) Development of molecular markers and linkage maps for the Carthamus species C. tinctorius and C. oxyacanthus. Genome 53(4):266–276CrossRefGoogle Scholar
  79. Mirzahashemi M, Golkar P, Mohamadinejad G (2014) Gene effects for agronomic traits in safflower (Carthamus tinctorius L.) under drought stress. Ethno-Pharma Prod 1(1):23–28Google Scholar
  80. Mirzahashemi M, Mohammadi-Nejad G, Golkar P (2015) A QTL linkage map of safflower for yield under drought stress at reproductive stage. Iran J Genet Plant Breed 4(2):18–25Google Scholar
  81. Mizukami H, Inagaki C, Okabe Y, Okuyama H (2000) cDNA cloning and characterization of a novel gene differentially expressed in developing seeds of high-oleate safflower (Carthamus tinctorius L.). Plant Biotechnol 17(4):315–319CrossRefGoogle Scholar
  82. Mokhtari N, Rahimmalek M, Talebi M, Khorrami M (2013) Assessment of genetic diversity among and within Carthamus species using sequence-related amplified polymorphism (SRAP) markers. Plant Syst Evol 299(7):1285–1294CrossRefGoogle Scholar
  83. Mukta N (2012) Global strategies for safflower germplasm resource management. In: Murthy IYLN, Basappa H, Varaprasad KS, Padmavathi P (eds) Safflower research and development in the world: status and strategies. Indian Society of Oilseeds Research, Hyderabad, pp 29–44Google Scholar
  84. Mündel HH, Centre LR (2004) Safflower production on the Canadian prairies: revisited in 2004. Lethbridge Research Station, Agriculture and Agri-Food Canada, LethbridgeGoogle Scholar
  85. Mündel HH, Huang HC, Kozub GC (1985) Sclerotinia head rot in safflower: assessment of resistance and effects on yield and oil content. Can J Plant Sci 65:259–265CrossRefGoogle Scholar
  86. Muñoz-Ruz J, Velasco L, Fernández-Martínez J (2000) Registration of the dwarf safflower genetic stock ‘Enana’. Crop Sci 40(4):1207–1207CrossRefGoogle Scholar
  87. Naik VR, Bentur M, Parameshwarappa K (2009) Impact of biparental mating on genetic variability and path analysis in safflower. Karnataka J Agric Sci 22(1):44–46Google Scholar
  88. Nakhaei M, Baghizadeh A, Mohammadi-Nejad G, Golkar P (2014) Genetic analysis of salt tolerance in safflower (Carthamus tinctorius L.). Ann Res Rev Biol 4(1):337CrossRefGoogle Scholar
  89. Naresh V, Yamini KN, Rajendrakumar P, Dinesh Kumar V (2009) EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica 170:347–353CrossRefGoogle Scholar
  90. Narkhede B, Deokar A (1990) Inheritance of spininess and pericarp types in safflower. J Maharashtra Agric Univ 15:279–279Google Scholar
  91. Narkhede B, Patil A, Deokar A (1987) Gene action of some characters in safflower. J Maharashtra Agric Univ 17(1):4–6Google Scholar
  92. Nikam T, Shitole M (1998) In vitro culture of safflower L. cv. Bhima: initiation, growth optimization and organogenesis. Plant Cell Tiss Org 55(1):15–22CrossRefGoogle Scholar
  93. Nykiforuk CL, Shen Y, Murray EW et al (2011) Expression and recovery of biologically active recombinant Apolipoprotein AlMilano from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnol 9:250–263Google Scholar
  94. Pearl SA, Bowers JE, Reyes-Chin-Wo S et al (2014) Genetic analysis of safflower domestication. BMC Plant Biol 14(1):43CrossRefPubMedPubMedCentralGoogle Scholar
  95. Peng S, Feng N, Guo M et al (2008) Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochem Syst Ecol 36(7):531–538CrossRefGoogle Scholar
  96. Ragab A, Kassem M, Moustafa H (2008) Assessment of spineless safflower (Carthamus tinctorius L.) mutant lines for seed oil content and fatty acid profiles. In: Proceedings of the 9th international conference for nuclear sciences and applications, Sharm Al Sheikh, Egypt, p 1239Google Scholar
  97. Raina S, Sharma S, Sasakuma T et al (2005) Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J Hered 96(4):424–429CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ramachandram M, Goud J (1983) Mutagenesis in safflower (Carthamus tinctorius L.). 1: differential radiosensitivity. Genet Agrar 37:309–318Google Scholar
  99. Ramachandram M, Sujatha M (1991) Development of genetic male sterile lines in safflower. Indian J Genet Plant Breed 51(2):268–269Google Scholar
  100. Rampure NH, Choudhary AD, Jambhulkar SJ, Badere RS (2015) Ethyl methanesulphonate-induced high oleic acid mutants in safflower (Carthamus tinctorius L.). J Crop Improv 29(6):720–727CrossRefGoogle Scholar
  101. Rampure N, Choudhary A, Jambhulkar S, Badere R (2017) Isolation of desirable mutants in safflower for crop improvement. Indian J Genet Plant Breed 77(1):134–144CrossRefGoogle Scholar
  102. Rapson S, Wu M, Okada S, Das A et al (2015) A case study on the genetic origin of the high oleic acid trait through FAD2-1 DNA sequence variation in safflower (Carthamus tinctorius L.). Front Plant Sci 6:691CrossRefPubMedPubMedCentralGoogle Scholar
  103. Rohini VK, Sankara Rao K (2000) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86(5):1043–1049CrossRefGoogle Scholar
  104. Rubis D (1969) Development of hybrid safflower. In: Proceedings, third safflower research conference, University of California, Davis, pp 27–32Google Scholar
  105. Sahu G, Kumar H (1978) Biological response of safflower to treatment with ethylmethane sulfonate. Indian J Agric Sci 48:162–164Google Scholar
  106. Sahu G, Tewari V (1993) Combining ability for yield traits in safflower. J Res Birsa Agric Univ 5:37–40Google Scholar
  107. Sankarar Rao K, Rohini V (1999) Gene transfer into Indian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotechnol 16(3):201–206CrossRefGoogle Scholar
  108. Seeta P, Talat K, Anwar S (2000) Somaclonal variation – an alternative source of genetic variability in safflower. J Cytol Genet 1:127–135Google Scholar
  109. Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76CrossRefGoogle Scholar
  110. Sehgal D, Rajpal VR, Raina SN (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470CrossRefPubMedPubMedCentralGoogle Scholar
  111. Shahbazi E, Saeidi G (2007) Genetic analysis for yield components and other agronomic characters in safflower (Carthamus tinctorius L.). Genet Breed 36:11–20Google Scholar
  112. Singh V (1997) Identification of genetic linkage between male sterility and dwarfness in safflower. Indian J Genet Plant Breed 57(3):327–332Google Scholar
  113. Singh V, Nimbkar N (1993) Genetics of aphid resistance in safflower (Carthamus tinctorius L.). Sesame Saffl Newsl 8:101–106Google Scholar
  114. Singh RJ, Nimbkar N (2006) Safflower (Carthamus tinctorius L.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, New York, pp 167–194Google Scholar
  115. Singh V, Galande M, Deshmukh S et al (2001) Identification of male sterile cytoplasm in safflower. In: Proceedings of the 5th international safflower conference, Williston, North Dakota and Sidney, Montana, USA, pp 123–126Google Scholar
  116. Singh V, Deshpande M, Nimbkar N (2003) NARI-NH-1: the first non-spiny hybrid safflower released in India. Sesame Saffl Newsl 18:77–79Google Scholar
  117. Singh V, Kolekar N, Nimbkar N (2008) Breeding strategy for improvement of flower and seed yields in safflower. In: Knights S, Potter T (eds) 7th international safflower conference, Wagga Wagga, New South Wales, Australia, pp 3–9Google Scholar
  118. Srivastava P, Kumar G (2011) EMS-induced cytomictic variability in safflower (Carthamus tinctorius L.). Cytol Genet 45(4):240–244CrossRefGoogle Scholar
  119. Sujatha M (2008) Biotechnological interventions for genetic improvement of safflower. In: Knights S, Potter T (eds) 7th international safflower conference, Wagga Wagga, New South Wales, Australia, pp 3–6Google Scholar
  120. Temple S, Knowles P (1975) Inheritance of brittle stems in safflower. Crop Sci 15(5):694–697CrossRefGoogle Scholar
  121. Urie A (1986) Inheritance of partial hull in safflower. Crop Sci 26(3):493–498CrossRefGoogle Scholar
  122. Velasco L, Pérez-Vich B, Muñoz-Ruz J, Fernández-Martínez J (2000) Inheritance of plant height in the dwarf mutant ‘Enana’of safflower. Plant Breed 119(6):525–527CrossRefGoogle Scholar
  123. Velasco L, Pérez-Vich B, Fernández-Martínez J (2005) Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breed 124(5):459–463CrossRefGoogle Scholar
  124. Vilatersana R, Garnatje T, Susanna A, Garcia-Jacas N (2005) Taxonomic problems in Carthamus (Asteraceae): RAPD markers and sectional classification. Bot J Linn Soc 147(3):375–383CrossRefGoogle Scholar
  125. Weiss E (2000) Safflower: oilseed crops. Blackwell Science Ltd, VictoriaGoogle Scholar
  126. Yang Y-X, Wu W, Zheng Y-L et al (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54(5):1043–1051CrossRefGoogle Scholar
  127. Ying M, Dyer WE, Bergman JW (1992) Agrobacterium tumefaciens-mediated transformation of safflower (Carthamus tinctorius L.) cv.‘Centennial’. Plant Cell Rep 11(11):581–585CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Institute for Biotechnology and BioengineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Pajoohan Spadan Research CompanyIsfahan Science and Technology TownIsfahanIran

Personalised recommendations