Methanotrophs pp 163-203 | Cite as

Metabolic Engineering of Methanotrophs for the Production of Chemicals and Fuels

  • Ok Kyung Lee
  • Diep T. N. Nguyen
  • Eun Yeol LeeEmail author
Part of the Microbiology Monographs book series (MICROMONO, volume 32)


Methane is a promising next-generation carbon feedstock for industrial biotechnology because it is inexpensive and abundant carbon. Biological conversion of methane to valuable products can reduce greenhouse gas (GHG) emissions caused by methane. Recently, genetic manipulation techniques and systems biology has provided new opportunities for metabolic engineering of methanotrophs and engineered strains have been employed as potential industrial strains for methane gas fermentation. For commercialization of the production of chemicals and fuels from methane, methanotrophs need to be further engineered based on rational metabolic engineering strategy to enhance carbon conversion yield, titer, and productivity. In this chapter, recent advances on metabolic engineering of methanotrophs, including genetic tool development, strategy to enhance carbon pool for product conversion, practical example of methane bioconversion, and prospect on the engineered methanotrophic cells as a cell-factory platform are discussed.


Bioconversion Cell-factory platform Metabolic engineering Methane Methanotroph 



This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2015M3D3A1A01064882).


  1. Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG (2018) Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach. Sci Rep 8:2512CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41PubMedCrossRefGoogle Scholar
  3. Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21PubMedCrossRefGoogle Scholar
  4. Arakane K (2001) Superior skin protection by astaxanthin. In: Presentation at the 15th annual meeting on carotenoid researchGoogle Scholar
  5. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89PubMedCrossRefGoogle Scholar
  6. Atsumi S, Wu T, Eckl E, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657PubMedCrossRefGoogle Scholar
  7. Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31:335–341PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci 105:10203–10208PubMedCrossRefGoogle Scholar
  9. Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651PubMedCrossRefGoogle Scholar
  10. Bergman A, Siewers V, Nielsen J, Chen Y (2016) Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express 6:115PubMedPubMedCentralCrossRefGoogle Scholar
  11. Białkowska AM (2016) Strategies for efficient and economical 2, 3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:200PubMedCrossRefGoogle Scholar
  12. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blumenstein J, Albert J, Shulz RP, Kohlpaintner C (2015) Crotonaldehyde and crotonic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  14. Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697PubMedCrossRefGoogle Scholar
  15. Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6:68PubMedPubMedCentralCrossRefGoogle Scholar
  16. Budarin V, Luque R, Macquarrie DJ, Clark JH (2007) Towards a bio-based industry: benign catalytic esterifications of succinic acid in the presence of water. Chem Eur J 13:6914–6919PubMedCrossRefGoogle Scholar
  17. Burke C, Croteau R (2002) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136PubMedCrossRefGoogle Scholar
  18. Cantera S, Lebrero R, Rodriguez E, Garcia-Encina PA, Munoz R (2017a) Continuous abatement of methane coupled with ectoine production by Methylomicrobium alcaliphilum 20Z in stirred tank reactors: a step further towards greenhouse gas biorefineries. J Clean Prod 152:134–141CrossRefGoogle Scholar
  19. Cantera S, Lebrero R, Rodriguez S, Garcia-Encina PA, Munoz R (2017b) Ectoine bio-milking in methanotrophs: a step further towards methane-based bio-refineries into high added-value products. Chem Eng J 328:44–48CrossRefGoogle Scholar
  20. Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146:60–78PubMedCrossRefGoogle Scholar
  21. Cheng K, Wang G, Zeng J, Zhang J (2013) Improved succinate production by metabolic engineering. BioMed Res Int 2013:538790PubMedPubMedCentralGoogle Scholar
  22. Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261SPubMedCrossRefGoogle Scholar
  23. Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H (2007) Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission. J Biosci Bioeng 103:262–269PubMedCrossRefGoogle Scholar
  24. Clement ND, Routaboul L, Grotevendt A, Jackstell R, Beller M (2008) Development of palladium–carbene catalysts for telomerization and dimerization of 1, 3-dienes: from basic research to industrial applications. Chem Eur J 14:7408–7420PubMedCrossRefGoogle Scholar
  25. Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá M, Gonzalez R (2012) A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 1:541–554PubMedCrossRefGoogle Scholar
  26. Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R (1993) 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem 268:23016–23024PubMedGoogle Scholar
  27. Coleman WJ, Vidanes GM, Cottarel G, Muley S, Kamimura R, Javan AF, Sun J, Groban ES (2014) Biological conversion of multi-carbon compounds from methane. US 14/206:835Google Scholar
  28. Crombie A, Murrell JC (2011) Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 495:119–133PubMedCrossRefGoogle Scholar
  29. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151CrossRefGoogle Scholar
  30. Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs K (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149:1785–1795PubMedCrossRefGoogle Scholar
  31. Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG (2017) Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1). Front Microbiol 7:2167PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dhingra V, Rao KV, Narasu ML (1999) Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci 66:279–300CrossRefGoogle Scholar
  33. DiCosimo DJ, Koffas M, Odom JM, Wang S (2004) Production of cyclic terpenoids. US 09/938:956Google Scholar
  34. Donaldson GK, Hollands K, Picataggio SK (2015) Biocatalyst for conversion of methane and methanol to isoprene. US 14/618:066Google Scholar
  35. Dong T, Fei Q, Genelot M, Smith H, Laurens LM, Watson MJ, Pienkos PT (2017) A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Convers Manag 140:62–70CrossRefGoogle Scholar
  36. Du F, Yu H, Xu J, Li C (2014) Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresour Bioprocess 1:10CrossRefGoogle Scholar
  37. Fall R, Copley SD (2000) Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ Microbiol 2:123–130PubMedCrossRefGoogle Scholar
  38. Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT (2018) Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnol Biofuels 11:129PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135PubMedCrossRefGoogle Scholar
  41. Fu Y, Li Y, Lidstrom M (2017) The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 42:43PubMedPubMedCentralCrossRefGoogle Scholar
  42. Garg S, Wu H, Clomburg JM, Bennett GN (2018) Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Metab Eng 48:175–183PubMedCrossRefGoogle Scholar
  43. Gilman A, Laurens LM, Puri AW, Chu F, Pienkos PT, Lidstrom ME (2015) Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb Cell Fact 14:182PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gordillo A, Pachón LD, de Jesus E, Rothenberg G (2009) Palladium-catalysed telomerisation of isoprene with glycerol and polyethylene glycol: a facile route to new terpene derivatives. Adv Synth Catal 351:325–330CrossRefGoogle Scholar
  45. Grand View Research (2017) 1,4-Butanediol market size, share 1,4 BDO industry report 2014–2025Google Scholar
  46. Greenhouse Gas Emissions (2017) Understanding global warming potentials. Environmental Protection AgencyGoogle Scholar
  47. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedCrossRefGoogle Scholar
  48. Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339PubMedCrossRefGoogle Scholar
  49. Henard CA, Freed EF, Guarnieri MT (2015) Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr Opin Biotechnol 36:183–188PubMedCrossRefGoogle Scholar
  50. Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585PubMedPubMedCentralCrossRefGoogle Scholar
  51. Henard CA, Smith HK, Guarnieri MT (2017) Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab Eng 41:152–158PubMedPubMedCentralCrossRefGoogle Scholar
  52. Henard CA, Franklin TG, Youhenna B, But S, Alexander D, Kalyuzhnaya MG, Guarnieri MT (2018) Biocatalysis: methanotrophic bacterial cultivation, metabolite profiling, and bioconversion to lactic acid. Front Microbiol 9:2610PubMedPubMedCentralCrossRefGoogle Scholar
  53. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196PubMedCrossRefGoogle Scholar
  54. Huelin FE, Murray KE (1966) α-Farnesene in the natural coating of apples. Nature 210:1260–1261PubMedCrossRefGoogle Scholar
  55. Hunter SE, Ehrenberger CE, Savage PE (2006) Kinetics and mechanism of tetrahydrofuran synthesis via 1, 4-butanediol dehydration in high-temperature water. J Org Chem 71:6229–6239PubMedCrossRefGoogle Scholar
  56. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449PubMedCrossRefGoogle Scholar
  57. Hwang DW, Kashinathan P, Lee JM, Lee JH, Lee U, Hwang J, Hwang YK, Chang J (2011) Production of γ-butyrolactone from biomass-derived 1, 4-butanediol over novel copper-silica nanocomposite. Green Chem 13:1672–1675CrossRefGoogle Scholar
  58. Hwang IY, Hur DH, Lee JH, Park C, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380PubMedCrossRefGoogle Scholar
  59. Hwang IY, Nguyen AD, Nguyen TT, Nguyen LT, Lee OK, Lee EY (2018) Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol 102:3071–3080PubMedCrossRefGoogle Scholar
  60. Hyon SH (2000) Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med J 41:720–734PubMedCrossRefGoogle Scholar
  61. Ishikawa M, Tanaka Y, Suzuki R, Kimura K, Tanaka K, Kamiya K, Ito H, Kato S, Kamachi T, Hori K, Nakanishi S (2017) Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresour Technol 241:1157–1161PubMedCrossRefGoogle Scholar
  62. Jackstell R, Grotevendt A, Michalik D, El Firdoussi L, Beller M (2007) Telomerization and dimerization of isoprene by in situ generated palladium–carbene catalysts. J Organomet Chem 692:4737–4744CrossRefGoogle Scholar
  63. Ji X, Huang H, Ouyang P (2011) Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364PubMedCrossRefGoogle Scholar
  64. Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174PubMedCrossRefGoogle Scholar
  65. Kabimoldayev I, Nguyen AD, Yang L, Park S, Lee EY, Kim D (2018) Basics of genome-scale metabolic modeling and applications on C1-utilization. FEMS Microbiol Lett 365:fny241CrossRefGoogle Scholar
  66. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Nagana Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kalyuzhnaya M, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152CrossRefGoogle Scholar
  68. Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172:321–329CrossRefGoogle Scholar
  69. Khmelenina VN, Rozova N, But CY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA (2015) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review). Prikl Biokhim Mikrobiol 51:140–150PubMedGoogle Scholar
  70. Kim S, Cheong S, Gonzalez R (2016) Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids. Metab Eng 36:90–98PubMedCrossRefGoogle Scholar
  71. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355PubMedCrossRefGoogle Scholar
  72. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627PubMedCrossRefGoogle Scholar
  73. Lane J (2015) Methane-munching platform microbe: the digest’s 2015 8-slide guide to intrexon energy. Biofuels Digest. 2017Google Scholar
  74. Larsen Ø, Karlsen OA (2015) Transcriptomic profi ling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases. Microbiologyopen 5:254–267PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee OK, Hur DH, Nguyen DTN, Lee EY (2016) Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuels Bioprod Biorefin 10(6):848–863CrossRefGoogle Scholar
  76. Leonard E, Minshull J, Ness JE, Purcell TJ (2014) Compositions and methods for biological production of isoprene. U.S. Patent Application No. 14/773,118 PCT/US2014/021258Google Scholar
  77. Lidov RE, Schaffel GS, White CJ (1963) Cracking of neohexene to isoprene. 24 December 1963Google Scholar
  78. Lieven C, Petersen LA, Jorgensen SB, Gernaey K, Herrgard M, Sonnenschein N (2018) A genome-scale metabolic model for Methylococcus capsulatus predicts reduced efficiency uphill electron transfer to pMMO. bioRxiv 329714Google Scholar
  79. Lloyd JS, De Marco P, Dalton H, Murrell JC (1999) Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch Microbiol 171:364–370PubMedCrossRefGoogle Scholar
  80. Martin H, Murrell JC (1995) Methane monooxygenase mutants of constructed by marker-exchange mutagenesis. FEMS Microbiol Lett 127:243–248CrossRefGoogle Scholar
  81. Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiology 147:2065–2075PubMedCrossRefGoogle Scholar
  82. Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4:40PubMedPubMedCentralCrossRefGoogle Scholar
  83. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740PubMedCrossRefGoogle Scholar
  84. Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697PubMedCrossRefGoogle Scholar
  85. Meinhold P, Peters MW, Chen MM, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chembiochem 6:1765–1768PubMedCrossRefGoogle Scholar
  86. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X (2016) High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Fact 15:141PubMedPubMedCentralCrossRefGoogle Scholar
  87. Miki W, Yamaguchi K, Konosu S (1982) Comparison of carotenoids in the ovaries of marine fish and shellfish. Comp Biochem Physiol B 71:7–11PubMedCrossRefGoogle Scholar
  88. Morais AR, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-Łukasik R (2015) Chemical and biological-based isoprene production: green metrics. Catal Today 239:38–43CrossRefGoogle Scholar
  89. Murrell JC (1992) Genetics and molecular biology of methanotrophs. FEMS Microbiol Lett 88:233–248CrossRefGoogle Scholar
  90. Muller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais J (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201PubMedCrossRefGoogle Scholar
  91. Munoz-Bertomeu J, Ros R, Arrillaga I, Segura J (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab Eng 10:166–177PubMedCrossRefGoogle Scholar
  92. Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 84:1003PubMedCrossRefGoogle Scholar
  93. Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN, Trotsenko YA (2016) Homo and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z. Appl Biochem Microbiol 52:263–268CrossRefGoogle Scholar
  94. Nattrass L, Aylott M, Higson A (2013) NNFCC renewable chemicals factsheet: succinic acid. NNFCC, YorkGoogle Scholar
  95. Nguyen HH, Chan S (2003) Protein and nucleic acid expression systems. US20030032141 A1Google Scholar
  96. Nguyen AD, Hwang IY, Lee OK, Hur DH, Jeon YC, Hadiyati S, Kim MS, Yoon SH, Jeong H, Lee EY (2018a) Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts 8:117CrossRefGoogle Scholar
  97. Nguyen AD, Hwang IY, Lee OK, Kim D, Kalyuzhnaya MG, Mariyana R, Hadiyati S, Kim MS, Lee EY (2018b) Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2, 3-butanediol production from methane. Metab Eng 47:323–333PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nguyen DTN, Lee OK, Hadiyati S, Affifah AN, Kim MS, Lee EY (2019) Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab Eng 54:170–117PubMedCrossRefGoogle Scholar
  99. Nishikawa Y, Minenaka Y, Ichimura M, Tatsumi K, Nadamoto T, Urabe K (2005) Effects of astaxanthin and vitamin C on the prevention of gastric ulcerations in stressed rats. J Nutr Sci Vitaminol 51:135–141PubMedCrossRefGoogle Scholar
  100. Niu FX, Lu Q, Bu YF, Liu JZ (2017) Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels. Synth Syst Biotechnol 2:167PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo (alkali) philic bacteria of the genus Methylomicrobium. Meth Enzymol 495:99–118PubMedCrossRefGoogle Scholar
  102. Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol. Proc Natl Acad Sci 110:1249–1254PubMedCrossRefGoogle Scholar
  103. Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  104. Patel A, Prajapat JB (2013) Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:107Google Scholar
  105. Pawar RU, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical applications of poly (lactic acid). Recent Pat Regen Med 4:40–51Google Scholar
  106. Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781PubMedPubMedCentralCrossRefGoogle Scholar
  107. Renninger NS, Mcphee DJ (2008) Inventors; Amyris Biotechnologies Inc, assignee. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. United States patent US 7,399,323Google Scholar
  108. Reshetnikov AS, Khmelenina VN, Mustakhimov II, Trotsenko YA (2011) 2 Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 495:15PubMedCrossRefGoogle Scholar
  109. Rick WY, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 34:289CrossRefGoogle Scholar
  110. Ro SY, Rosenzweig AC (2018) Recent advances in the genetic manipulation of Methylosinus trichosporium OB3b. Methods Enzymol 605:335–349PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rodriguez-Anton LM, Gutierrez-Martin F, Doce Y (2016) Physical properties of gasoline, isobutanol and ETBE binary blends in comparison with gasoline ethanol blends. Fuel 166:73–78CrossRefGoogle Scholar
  112. Rydz J, Sikorska W, Kyulavska M, Christova D (2014) Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596PubMedPubMedCentralCrossRefGoogle Scholar
  113. Saville RM, Lee S, Regitsky DD, Resnick SM, Silverman JA (2016) Inventors; CALYSTA Inc, assignee. Compositions and methods for biological production of lactate from C1 compounds using lactate dehydrogenase transformants. United States patent application US 14/898,948Google Scholar
  114. Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Rick WY (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73:1721–1728PubMedPubMedCentralCrossRefGoogle Scholar
  115. Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709PubMedPubMedCentralGoogle Scholar
  116. Smith TJ, Murrell JC (2011) Chapter nine – Mutagenesis of soluble methane monooxygenase. In: Rosenzweig AC, Ragsdale SW (eds) Methods in enzymology methods in methane metabolism, part B: methanotrophy, vol 495. Academic Press, Cambridge, pp 135–147CrossRefGoogle Scholar
  117. Smith TJ, Slade SE, Burton NP, Murrell JC, Dalton H (2002) Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl Environ Microbiol 68:5265–5273PubMedPubMedCentralCrossRefGoogle Scholar
  118. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018CrossRefPubMedPubMedCentralGoogle Scholar
  119. Subbian E (2017a) Inventor; String Bio Private Limited, assignee. Production of lactic acid from organic waste or biogas or methane using recombinant methanotrophic bacteria. United States patent application US 15/303,188Google Scholar
  120. Subbian E (2017b) Inventor; String Bio Private Limited, assignee. Production of succinic acid from organic waste or biogas or methane using recombinant methanotrophic bacterium. United States patent application US 15/303,184Google Scholar
  121. Tao L, Sedkova N, Yao H, Rick WY, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74:625PubMedCrossRefGoogle Scholar
  122. Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692PubMedCrossRefGoogle Scholar
  123. Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 14:188PubMedPubMedCentralCrossRefGoogle Scholar
  124. Torrissen OJ, Christiansen R (1995) Requirements for carotenoids in fish diets. J Appl Ichthyol 11:225–230CrossRefGoogle Scholar
  125. Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240CrossRefGoogle Scholar
  126. Van Ophem PW, Van Beeumen J, Duine JA (1993) Nicotinoprotein [NAD (P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur J Biochem 212:819–826PubMedCrossRefGoogle Scholar
  127. Visser H, van Ooyen AJ, Verdoes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231PubMedCrossRefGoogle Scholar
  128. Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD (2014) Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 80:3044–3052PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344PubMedCentralCrossRefPubMedGoogle Scholar
  130. Wang C, Yoon S, Jang H, Chung Y, Kim J, Choi E, Kim S (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655PubMedCrossRefGoogle Scholar
  131. Wang X, Wang Y, Liu J, Li Q, Zhang Z, Zheng P, Lu F, Sun J (2017) Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour Bioprocess 4:41CrossRefGoogle Scholar
  132. Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci U S A 109:12905–12910PubMedPubMedCentralCrossRefGoogle Scholar
  133. Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET (2015) Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33:165–175CrossRefGoogle Scholar
  134. Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49–59PubMedCrossRefGoogle Scholar
  135. Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220PubMedCrossRefGoogle Scholar
  136. Witthoff S, Schmitz K, Niedenfhr S, Nh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81:2215–2225PubMedPubMedCentralCrossRefGoogle Scholar
  137. Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Lu JR (2012) Thermophilic fermentation of acetoin and 2, 3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 5:88PubMedPubMedCentralCrossRefGoogle Scholar
  138. Xu J, Guo B (2010) Poly (butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163PubMedCrossRefGoogle Scholar
  139. Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol. Metab Eng 23:22–33PubMedCrossRefGoogle Scholar
  140. Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME (2016) Electroporation-based genetic manipulation in type I methanotrophs. Appl Environ Microbiol 82:2062–2069PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yang DS, Son KC, Kays SJ (2009) Volatile organic compounds emanating from indoor ornamental plants. Hortic Sci 44:396–400Google Scholar
  142. Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, Orphan VJ, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol 4:70PubMedPubMedCentralGoogle Scholar
  143. Ye R, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas strain 16a. J Ind Microbiol Biotechnol 34:289–299PubMedCrossRefGoogle Scholar
  144. Ye RW, Kelly K (2012) Construction of carotenoid biosynthetic pathways through chromosomal integration in methane-utilizing bacterium Methylomonas sp. Strain 16a. Methods Mol Biol 892:185–195PubMedCrossRefGoogle Scholar
  145. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7:445–452PubMedCrossRefGoogle Scholar
  146. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552CrossRefGoogle Scholar
  147. Zhang X, Pan L, Wei X, Gao H, Liu J (2007) Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environ Geochem Health 29:483–489PubMedCrossRefGoogle Scholar
  148. Zilly FE, Acevedo JP, Augustyniak W, Deege A, Husig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem 123:2772–2776CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ok Kyung Lee
    • 1
  • Diep T. N. Nguyen
    • 1
  • Eun Yeol Lee
    • 1
    Email author
  1. 1.Department of Chemical EngineeringKyung Hee UniversityYongin-siSouth Korea

Personalised recommendations