The Biochemistry of Methane Monooxygenases

  • Sunney I. Chan
  • Seung Jae LeeEmail author
Part of the Microbiology Monographs book series (MICROMONO, volume 32)


Selective methane (CH4) oxidation is extremely difficult chemistry. Methane monooxygenases (MMOs ) facilitate the biological conversion of CH4 into methanol in methanotrophs under ambient temperatures and pressures. Methanotrophs typically express the membrane-bound particulate form of MMO (pMMO ), but the soluble form of MMO (sMMO ) is often expressed under copper-limiting conditions. Numerous biochemical and biophysical approaches have been explored to elucidate the mechanisms of pMMO and sMMO over the past four decades, especially to examine the structures and the functional roles of the active sites. In this chapter, the biochemistry, including structural and functional features of MMOs, will be described. We first summarize the biochemical/biophysical studies that have led to the discovery of a unique tricopper cluster as the catalytic site in pMMO and culminated in the successful development of a biomimetic catalyst capable of mediating efficient CH4 oxidation at room temperature. We then review the spectroscopic, kinetic, and structural studies that have contributed to clarification of the catalytic mechanisms near the non-heme diiron active sites in the hydroxylase of sMMO, as well as the roles played by the regulatory protein and the reductase in this chemistry.


  1. Anthony C (1982) The biochemistry of methylotrophs. Academic, LondonGoogle Scholar
  2. Bailey LJ, McCoy JG, Phillips GN, Fox BG (2008) Structural consequences of effector protein complex formation in a diiron hydroxylase. Proc Natl Acad Sci U S A 105:19194–19198PubMedPubMedCentralCrossRefGoogle Scholar
  3. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–119PubMedPubMedCentralCrossRefGoogle Scholar
  4. Banerjee R, Proshlyakov Y, Lipscomb JD, Proshlyakov DA (2015) Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518:431–434PubMedPubMedCentralCrossRefGoogle Scholar
  5. Basu P, Katterle B, Andersson KK, Dalton H (2003) The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem J 369:417–427PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263PubMedCrossRefPubMedCentralGoogle Scholar
  7. Blazyk JL, Gassner GT, Lippard SJ (2005) Intermolecular electron-transfer reactions in soluble methane monooxygenase: a role for hysteresis in protein function. J Am Chem Soc 127:17364–17376PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blazyk JL, Lippard SJ (2002) Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Biochemistry 41:15780–15794PubMedCrossRefPubMedCentralGoogle Scholar
  9. Blazyk JL, Lippard SJ (2004) Domain engineering of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 279:5630–5640PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cao L, Caldararu O, Rosenzweig AC, Ryde U (2018) Quantum refinement does not support dinuclear copper sites in crystal structures of particulate methane monooxygenase. Angew Chem Int Ed 57:162–166CrossRefGoogle Scholar
  11. Cardy DL, Laidler V, Salmond GP, Murrell JC (1991) The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Arch Microbiol 156:477–483PubMedCrossRefPubMedCentralGoogle Scholar
  12. Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S (2017) High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J Am Chem Soc 139:18024–18033PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chan SI, Nguyen HHT, Shiemke AK, Lidstrom ME (1993) The copper ions in the membrane-associated methane monooxygenase. In: Karlin KD, Tyeklar Z (eds) Bioinorganic chemistry of copper. Chapman and Hall, New YorkGoogle Scholar
  14. Chan SI, Chen KHC, Yu SSF, Chen CL, Kuo SSJ (2004) Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 43:4421–4430PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chan SI, Wang VCC, Lai JCH, Yu SSF, Chen PPY, Chen KHC, Chen CL, Chan MK (2007) Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew Chem Int Ed 46:1992–1994CrossRefGoogle Scholar
  16. Chan SI, Yu SSF (2008) Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc Chem Res 41:969–979PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chan SI, Nguyen HHT, Chen KHC, Yu SSF (2011) Overexpression and purification of the particulate methane monooxygenase from Methylococcus capsulatus (Bath). In: Rosenzweig AC, Ragsdale SW (eds) Methods in methane metabolism, methods in enzymology, vol 495. Academic, Burlington, MA, pp 177–193CrossRefGoogle Scholar
  18. Chan SI, Lu YJ, Nagababu P, Maji S, Hung MC, Lee MM, Hsu IJ, Minh PD, Lai JCH, Ng KY, Ramalingam S, Yu SSF, Chan MK (2013) Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters. Angew Chem Int Ed 52:3731–3735CrossRefGoogle Scholar
  19. Chang SL, Wallar BJ, Lipscomb JD, Mayo KH (1999) Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38:5799–5812PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chatwood LL, Muller J, Gross JD, Wagner G, Lippard SJ (2004) NMR structure of the flavin domain from soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath). Biochemistry 43:11983–11991PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen KHC, Chen CL, Tseng CF, Yu SSF, Ke SC, Lee JF, Nguyen HT, Elliott SJ, Alben JO, Chan SI (2004) The copper clusters in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath). J Chin Chem Soc 51:1081–1098CrossRefGoogle Scholar
  22. Chen PPY, Nagababu P, Yu SSF, Chan SI (2014) Development of the tricopper cluster as a catalyst for the efficient conversion of methane into MeOH. ChemCatChem 6:429–437CrossRefGoogle Scholar
  23. Chidambaram-Padmavathy K, Oblulisamy PK, Heimann K (2015) Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Eng Life Sci 15:387–399CrossRefGoogle Scholar
  24. Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, de la Mora AM, DiSpirito AA (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH: quinone oxidoreductase complex from Methylococcus capsulatus (Bath). J Bacteriol 185:5755–5764PubMedPubMedCentralCrossRefGoogle Scholar
  25. Colby J, Stirling DI, Dalton H (1977) Soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic-compounds. Biochem J 165:395–402PubMedPubMedCentralCrossRefGoogle Scholar
  26. Davydov A, Davydov R, Graslund A, Lipscomb JD, Andersson KK (1997) Radiolytic reduction of methane monooxygenase dinuclear iron cluster at 77 K - EPR evidence for conformational change upon reduction or binding of component B to the diferric state. J Biol Chem 272:7022–7026PubMedCrossRefPubMedCentralGoogle Scholar
  27. Davydov R, Hoffman BM, Valentine AM, Lippard SJ, Sligar SG, Ikeda-Saito M (1999a) EPR and ENDOR studies on cryoreduced metalloproteins. J Inorg Biochem 74:110Google Scholar
  28. Davydov R, Valentine AM, Komar-Panicucci S, Hoffman BM, Lippard SJ (1999b) An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Biochemistry 38:4188–4197PubMedCrossRefPubMedCentralGoogle Scholar
  29. Deeth RJ, Dalton H (1998) Methane activation by methane monooxygenase: free radicals, Fe-C bonding, substrate dependent pathways and the role of the regulatory protein. J Biol Inorg Chem 3:302–306CrossRefGoogle Scholar
  30. DeRose VJ, Liu KE, Kurtz DM, Hoffman BM, Lippard SJ (1993) Proton ENDOR identification of bridging hydroxide ligands in mixed-valent diiron centers of proteins: methane monooxygenase and semimet azidohemerythrin. J Am Chem Soc 115:6440–6441CrossRefGoogle Scholar
  31. Dewitt JG, Bentsen JG, Rosenzweig AC, Hedman B, Green J, Pilkington S, Papaefthymiou GC, Dalton H, Hodgson KO, Lippard SJ (1991) X-ray absorption, moessbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase. J Am Chem Soc 113:9219–9235CrossRefGoogle Scholar
  32. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568PubMedPubMedCentralCrossRefGoogle Scholar
  33. Elliott SJ, Zhu M, Tso L, Nguyen HHT, Yip JHK, Chan SI (1997) Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 119:9949–9955CrossRefGoogle Scholar
  34. Feig AL, Lippard SJ (1994) Reactions of non-heme iron(II) centers with dioxygen in biology and chemistry. Chem Rev 94:759–805CrossRefGoogle Scholar
  35. Fox BG, Froland WA, Dege JE, Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium OB3b - purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264:10023–10033PubMedPubMedCentralGoogle Scholar
  36. Fox BG, Liu Y, Dege JE, Lipscomb JD (1991) Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b - identification of sites of component interaction. J Biol Chem 266:540–550PubMedPubMedCentralGoogle Scholar
  37. Fox BG, Surerus KK, Munck E, Lipscomb JD (1988) Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase - Mössbauer and EPR studies. J Biol Chem 263:10553–10556PubMedGoogle Scholar
  38. Froland WA, Andersson KK, Lee SK, Liu Y, Lipscomb JD (1992) Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions - a novel role for protein-protein interactions in an oxygenase mechanism. J Biol Chem 267:17588–17597PubMedPubMedCentralGoogle Scholar
  39. Gassner GT, Lippard SJ (1999) Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Biochemistry 38:12768–12785PubMedCrossRefGoogle Scholar
  40. Green J, Dalton H (1989) A stopped-flow kinetic study of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochem J 259:167–172PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  43. Jasniewski AJ, Que L (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev 118:2554–2592PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kao WC, Chen YR, Yi EC, Lee H, Tian Q, Wu KM, Tsai SF, Yu SSF, Chen YJ, Aebersold R, Chan SI (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279:51554–51560PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kopp DA, Gassner GT, Blazyk JL, Lippard SJ (2001) Electron-transfer reactions of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Biochemistry 40:14932–14941PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lee SJ, McCormick MS, Lippard SJ, Cho US (2013) Control of substrate access to the active site in methane monooxygenase. Nature 494:380–384PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee SK, Lipscomb JD (1999) Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O–O bond cleavage steps. Biochemistry 38:4423–4432PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lipscomb JD, Lee SK, Nesheim JC, Froland WA, Fox BG, Munck E (1994) Reactive intermediates in the methane monooxygenase catalyzed oxidation of methane and other hydrocarbons. Abstr Pap Am Chem Soc 207:273Google Scholar
  52. Liu CC, Mou CY, Yu SSF, Chan SI (2016) Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy Environ Sci 9:1361–1374CrossRefGoogle Scholar
  53. Liu CC, Janmanchi D, Wen DR, Oung JN, Mou CY, Yu SSF, Chan SI (2018) Catalytic oxidation of light alkanes mediated at room temperature by a tricopper cluster complex immobilized in mesoporous silica nanoparticles. ACS Sustain Chem Eng 6(4):5431–5440CrossRefGoogle Scholar
  54. Liu KE, Valentine AM, Wang DL, Huynh BH, Edmondson DE, Salifoglou A, Lippard SJ (1995a) Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 117:10174–10185CrossRefGoogle Scholar
  55. Liu KE, Wang DL, Huynh BH, Edmondson DE, Salifoglou A, Lippard SJ (1994) Spectroscopic detection of intermediates in the Reaction of dioxygen with the reduced methane monooxygenase/hydroxylase from Methylococcus capsulatus (Bath). J Am Chem Soc 116:7465–7466CrossRefGoogle Scholar
  56. Liu Y, Nesheim JC, Lee SK, Lipscomb JD (1995b) Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component. J Biol Chem 270:24662–24665PubMedCrossRefPubMedCentralGoogle Scholar
  57. Liu Y, Nesheim JC, Paulsen KE, Stankovich MT, Lipscomb JD (1997) Roles of the methane monooxygenase reductase component in the regulation of catalysis. Biochemistry 36:5223–5233PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lloyd JS, Bhambra A, Murrell JC, Dalton H (1997) Inactivation of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath) by proteolysis can be overcome by a Gly to Gln modification. Eur J Biochem 248:72–79PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lu YJ, Hung MC, Chang BTA, Lee TL, Lin ZH, Tsai IK, Chen YS, Chang CS, Tsai YF, Chen KHC, Chan SI, Yu SSF (2019) The PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): the CuI sponge and its function. J Inorg Biochem 196:110691PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lund J, Woodland MP, Dalton H (1985) Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur J Biochem 147:297–305PubMedCrossRefPubMedCentralGoogle Scholar
  61. Maji S, Lee JCM, Lu YJ, Chen CL, Hung MC, Chen PPY, Yu SSF, Chan SI (2012) Dioxygen activation of a trinuclear CuICuICuI cluster capable of mediating facile oxidation of organic substrates: competition between O-atom transfer and abortive intercomplex reduction. Chem Eur J 18:3955–3968PubMedCrossRefPubMedCentralGoogle Scholar
  62. McCormick MS, Lippard SJ (2011) Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1. Biochemistry 50:11058–11069PubMedPubMedCentralCrossRefGoogle Scholar
  63. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed 40:2782–2807CrossRefGoogle Scholar
  64. Merkx M, Lippard SJ (2002) Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 277:5858–5865PubMedCrossRefPubMedCentralGoogle Scholar
  65. Muller J, Lugovskoy AA, Wagner G, Lippard SJ (2002) NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase. Biochemistry 41:42–51PubMedCrossRefPubMedCentralGoogle Scholar
  66. Murray LJ, Lippard SJ (2007) Substrate trafficking and dioxygen activation in bacterial multicomponent monooxygenases. Acc Chem Res 40:466–474PubMedCrossRefPubMedCentralGoogle Scholar
  67. Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225PubMedCrossRefPubMedCentralGoogle Scholar
  68. Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 45:11905–11914PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nagababu P, Yu SSF, Maji S, Ramu R, Chan SI (2014) Developing an efficient catalyst for controlled oxidation of small alkanes under ambient conditions. Cat Sci Technol 4:930–935CrossRefGoogle Scholar
  70. Nesheim JC, Lipscomb JD (1996) Large kinetic isotope effects in methane oxidation catalyzed by ethane monooxygenase: evidence for C–H bond cleavage in a reaction cycle intermediate. Biochemistry 35:10240–10247PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ng KY, Tu LC, Wang YS, Chan SI, Yu SSF (2008) Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation. Chembiochem 9:1116–1123PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 69:14995–15005Google Scholar
  73. Nguyen HHT, Nakagawa KH, Hedman B, Elliott SJ, Lidstrom ME, Hodgson KO, Chan SI (1996) X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. J Am Chem Soc 118:12766–12776CrossRefGoogle Scholar
  74. Nguyen HHT, Elliott SJ, Yip JHK, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme—isolation and characterization. J Biol Chem 273:7957–7966PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pham MD, Yu SSF, Han CC, Chan SI (2013) Improved mass spectrometric analysis of membrane proteins based on rapid and versatile sample preparation on nanodiamond particles. Anal Chem 85:6748–6755PubMedCrossRefPubMedCentralGoogle Scholar
  76. Pham MD, Lin YP, Vuong QV, Nagababu P, Chang BTA, Ng KY, Chen CH, Han CC, Chen CH, Li MS, Yu SSF, Chan SI (2015) Inactivation of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath) by acetylene. Biochim Biophys Acta Proteins Proteomics 1854:1842–1852CrossRefGoogle Scholar
  77. Pulver S, Froland WA, Fox BG, Lipscomb JD, Solomon EI (1993) Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin. J Am Chem Soc 115:12409–12422CrossRefGoogle Scholar
  78. Pulver S, Froland WA, Fox BG, Lipscomb JD, Solomon EI (1994) Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin. J Am Chem Soc 116:4529–4529CrossRefGoogle Scholar
  79. Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA (1997) Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins Struct Funct Genet 29:141–152PubMedCrossRefPubMedCentralGoogle Scholar
  80. Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ (1995) Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chem Biol 2:409–418PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sazinsky MH, Dunten PW, McCormick MS, DiDonato A, Lippard SJ (2006) X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Biochemistry 45:15392–15404PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sazinsky MH, Lippard SJ (2006) Correlating structure with function in bacterial multicomponent monooxygenases and related diiron proteins. Acc Chem Res 39:558–566PubMedCrossRefPubMedCentralGoogle Scholar
  84. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531PubMedCrossRefPubMedCentralGoogle Scholar
  85. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326:716–718PubMedCrossRefPubMedCentralGoogle Scholar
  86. Shinohara Y, Uchiyama H, Yagi O, Kusakabe I (1998) Purification and characterization of component B of a soluble methane monooxygenase from Methylocystis sp. M. J Ferment Bioeng 85:37–42CrossRefGoogle Scholar
  87. Shu LJ, Nesheim JC, Kauffmann K, Munck E, Lipscomb JD, Que L (1997) An Fe2 IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275:515–518PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sirajuddin S, Barupala D, Helling S, Marcus K, Stemmler TL, Rosenzweig AC (2014) Effects of zinc on particulate methane monooxygenase activity and structure. J Biol Chem 289:21782–21794PubMedPubMedCentralCrossRefGoogle Scholar
  89. Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species Strain M. Biochemistry 50:10231–10240PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stafford GP, Scanlan J, McDonald IR, Murrell JC (2003) rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology 149:1771–1784PubMedCrossRefPubMedCentralGoogle Scholar
  91. Stainthorpe AC, Lees V, Salmond GPC, Dalton H, Murrell JC (1990) The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene 91:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  92. Stein LY, Yoon S, Semrau JD, DiSpirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, den Camp HJMO, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han SS, Hauser L, Jetten MSM, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium Strain OB3b. J Bacteriol 192:6497–6498PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stolyar S, Costello AM, Peeples TL, Lidstrom ME (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 145:1235–1244PubMedCrossRefPubMedCentralGoogle Scholar
  94. Thomann H, Bernardo M, McCormick JM, Pulver S, Andersson KK, Lipscomb JD, Solomon EI (1993) Pulsed EPR studies of mixed valent [Fe(II)Fe(III)] forms of hemerythrin and methane monooxygenase: evidence for a hydroxide bridge. J Am Chem Soc 115:8881–8882CrossRefGoogle Scholar
  95. Tinberg CE, Lippard SJ (2009) Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Biochemistry 48:12145–12158PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tinberg CE, Lippard SJ (2010) Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates Hperoxo and Q proceed by distinct mechanisms. Biochemistry 49:7902–7912PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tinberg CE, Lippard SJ (2011) Dioxygen activation in soluble methane monooxygenase. Acc Chem Res 44:280–288PubMedPubMedCentralCrossRefGoogle Scholar
  98. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  99. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229PubMedCrossRefPubMedCentralGoogle Scholar
  100. Vinchurkar MS, KHC C, SSF Y, Kuo SJ, Chiu HC, Chien SH, Chan SI (2004) Polarized ATR-FTIR spectroscopy of the membrane-embedded domains of the particulate methane monooxygenase. Biochemistry 43:13283–13292PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wallar BJ, Lipscomb JD (1996) Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev 96:2625–2657PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wallar BJ, Lipscomb JD (2001) Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle. Biochemistry 40:2220–2233PubMedCrossRefPubMedCentralGoogle Scholar
  103. Walters KJ, Gassner GT, Lippard SJ, Wagner G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc Natl Acad Sci U S A 96:7877–7882PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev 117:8574–8621PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wang WX, Iacob RE, Luoh RP, Engen JR, Lippard SJ (2014) Electron transfer control in soluble methane monooxygenase. J Am Chem Soc 136:9754–9762PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wang WX, Liang AD, Lippard SJ (2015) Coupling oxygen consumption with hydrocarbon oxidation in bacterial multicomponent monooxygenases. Acc Chem Res 48:2632–2639PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wang WX, Lippard SJ (2014) Diiron oxidation state control of substrate access to the active site of soluble methane monooxygenase mediated by the regulatory component. J Am Chem Soc 136:2244–2247PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang LX, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IA, Fouts D, Ravel J, Tettlin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:1616–1628Google Scholar
  109. Whittington DA, Lippard SJ (2001) Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J Am Chem Soc 123:827–838PubMedCrossRefPubMedCentralGoogle Scholar
  110. Whittington DA, Rosenzweig AC, Frederick CA, Lippard SJ (2001a) Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Biochemistry 40:3476–3482PubMedCrossRefPubMedCentralGoogle Scholar
  111. Whittington DA, Sazinsky MH, Lippard SJ (2001b) X-ray crystal structure of alcohol products bound at the active site of soluble methane monooxygenase hydroxylase. J Am Chem Soc 123:1794–1795PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wilkinson B, Zhu M, Priestley ND, Nguyen HHT, Morimoto H, Williams PG, Chan SI, Floss HG (1996) A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 118:921–922CrossRefGoogle Scholar
  113. Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, Huang DS, Chan SI (2003a) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185:5915–5924PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yu SSF, Wu LY, Chen KHC, Luo WI, Huang DS, Chan SI (2003b) The stereospecific hydroxylation of [2, 2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 278:40658–40669PubMedCrossRefPubMedCentralGoogle Scholar
  115. Yu SSF, Ji CZ, Wu YP, Lee TL, Lai CH, Lin SC, Yang ZL, Wang VCC, Chen KHC, Chan SI (2007) The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monooxygenase in Methylococcus capsulatus (Bath) is a Cu(I) sponge. Biochemistry 46:13762–13774PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Noyes LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Institute of ChemistryAcademia SinicaNankangTaiwan
  3. 3.Department of Chemistry and Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations